Abstract:Different from traditional video retrieval, sign language retrieval is more biased towards understanding the semantic information of human actions contained in video clips. Previous works typically only encode RGB videos to obtain high-level semantic features, resulting in local action details drowned in a large amount of visual information redundancy. Furthermore, existing RGB-based sign retrieval works suffer from the huge memory cost of dense visual data embedding in end-to-end training, and adopt offline RGB encoder instead, leading to suboptimal feature representation. To address these issues, we propose a novel sign language representation framework called Semantically Enhanced Dual-Stream Encoder (SEDS), which integrates Pose and RGB modalities to represent the local and global information of sign language videos. Specifically, the Pose encoder embeds the coordinates of keypoints corresponding to human joints, effectively capturing detailed action features. For better context-aware fusion of two video modalities, we propose a Cross Gloss Attention Fusion (CGAF) module to aggregate the adjacent clip features with similar semantic information from intra-modality and inter-modality. Moreover, a Pose-RGB Fine-grained Matching Objective is developed to enhance the aggregated fusion feature by contextual matching of fine-grained dual-stream features. Besides the offline RGB encoder, the whole framework only contains learnable lightweight networks, which can be trained end-to-end. Extensive experiments demonstrate that our framework significantly outperforms state-of-the-art methods on various datasets.
Abstract:In 3D human action recognition, limited supervised data makes it challenging to fully tap into the modeling potential of powerful networks such as transformers. As a result, researchers have been actively investigating effective self-supervised pre-training strategies. In this work, we show that instead of following the prevalent pretext task to perform masked self-component reconstruction in human joints, explicit contextual motion modeling is key to the success of learning effective feature representation for 3D action recognition. Formally, we propose the Masked Motion Prediction (MAMP) framework. To be specific, the proposed MAMP takes as input the masked spatio-temporal skeleton sequence and predicts the corresponding temporal motion of the masked human joints. Considering the high temporal redundancy of the skeleton sequence, in our MAMP, the motion information also acts as an empirical semantic richness prior that guide the masking process, promoting better attention to semantically rich temporal regions. Extensive experiments on NTU-60, NTU-120, and PKU-MMD datasets show that the proposed MAMP pre-training substantially improves the performance of the adopted vanilla transformer, achieving state-of-the-art results without bells and whistles. The source code of our MAMP is available at https://github.com/maoyunyao/MAMP.