Abstract:Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language processing tasks. Exploiting the heterogeneous capabilities of edge LLMs is crucial for diverse emerging applications, as it enables greater cost-effectiveness and reduced latency. In this work, we introduce \textit{Mixture-of-Edge-Experts (MoE$^2$)}, a novel collaborative inference framework for edge LLMs. We formulate the joint gating and expert selection problem to optimize inference performance under energy and latency constraints. Unlike conventional MoE problems, LLM expert selection is significantly more challenging due to the combinatorial nature and the heterogeneity of edge LLMs across various attributes. To this end, we propose a two-level expert selection mechanism through which we uncover an optimality-preserving property of gating parameters across expert selections. This property enables the decomposition of the training and selection processes, significantly reducing complexity. Furthermore, we leverage the objective's monotonicity and design a discrete monotonic optimization algorithm for optimal expert selection. We implement edge servers with NVIDIA Jetson AGX Orins and NVIDIA RTX 4090 GPUs, and perform extensive experiments. Our results validate that performance improvements of various LLM models and show that our MoE$^2$ method can achieve optimal trade-offs among different delay and energy budgets, and outperforms baselines under various system resource constraints.
Abstract:Currently, most applications in the Industrial Internet of Things (IIoT) still rely on CNN-based neural networks. Although Transformer-based large models (LMs), including language, vision, and multimodal models, have demonstrated impressive capabilities in AI-generated content (AIGC), their application in industrial domains, such as detection, planning, and control, remains relatively limited. Deploying pre-trained LMs in industrial environments often encounters the challenge of stability and plasticity due to the complexity of tasks, the diversity of data, and the dynamic nature of user demands. To address these challenges, the pre-training and fine-tuning strategy, coupled with continual learning, has proven to be an effective solution, enabling models to adapt to dynamic demands while continuously optimizing their inference and decision-making capabilities. This paper surveys the integration of LMs into IIoT-enhanced General Industrial Intelligence (GII), focusing on two key areas: LMs for GII and LMs on GII. The former focuses on leveraging LMs to provide optimized solutions for industrial application challenges, while the latter investigates continuous optimization of LMs learning and inference capabilities in collaborative scenarios involving industrial devices, edge computing, and cloud computing. This paper provides insights into the future development of GII, aiming to establish a comprehensive theoretical framework and research direction for GII, thereby advancing GII towards a more general and adaptive future.
Abstract:Image semantic communication (ISC) has garnered significant attention for its potential to achieve high efficiency in visual content transmission. However, existing ISC systems based on joint source-channel coding face challenges in interpretability, operability, and compatibility. To address these limitations, we propose a novel trustworthy ISC framework. This approach leverages text extraction and segmentation mapping techniques to convert images into explainable semantics, while employing Generative Artificial Intelligence (GenAI) for multiple downstream inference tasks. We also introduce a multi-rate ISC transmission protocol that dynamically adapts to both the received explainable semantic content and specific task requirements at the receiver. Simulation results demonstrate that our framework achieves explainable learning, decoupled training, and compatible transmission in various application scenarios. Finally, some intriguing research directions and application scenarios are identified.
Abstract:Timely status updating is the premise of emerging interaction-based applications in the Internet of Things (IoT). Using redundant devices to update the status of interest is a promising method to improve the timeliness of information. However, parallel status updating leads to out-of-order arrivals at the monitor, significantly challenging timeliness analysis. This work studies the Age of Information (AoI) of a multi-queue status update system where multiple devices monitor the same physical process. Specifically, two systems are considered: the Basic System, which only has type-1 devices that are ad hoc devices located close to the source, and the Hybrid System, which contains additional type-2 devices that are infrastructure-based devices located in fixed points compared to the Basic System. Using the Stochastic Hybrid Systems (SHS) framework, a mathematical model that combines discrete and continuous dynamics, we derive the expressions of the average AoI of the considered two systems in closed form. Numerical results verify the accuracy of the analysis. It is shown that when the number and parameters of the type-1 devices/type-2 devices are fixed, the logarithm of average AoI will linearly decrease with the logarithm of the total arrival rate of type-2 devices or that of the number of type-1 devices under specific condition. It has also been demonstrated that the proposed systems can significantly outperform the FCFS M/M/N status update system.
Abstract:In this paper, we introduce a novel mathematical framework for assessing the performance of joint communication and sensing (JCAS) in wireless networks, employing stochastic geometry as an analytical tool. We focus on deriving the meta distribution of the signal-to-interference ratio (SIR) for JCAS networks. This approach enables a fine-grained quantification of individual user or radar performance intrinsic to these networks. Our work involves the modeling of JCAS networks and the derivation of mathematical expressions for the JCAS SIR meta distribution. Through simulations, we validate both our theoretical analysis and illustrate how the JCAS SIR meta distribution varies with the network deployment density.
Abstract:We propose a federated version of adaptive gradient methods, particularly AdaGrad and Adam, within the framework of over-the-air model training. This approach capitalizes on the inherent superposition property of wireless channels, facilitating fast and scalable parameter aggregation. Meanwhile, it enhances the robustness of the model training process by dynamically adjusting the stepsize in accordance with the global gradient update. We derive the convergence rate of the training algorithms, encompassing the effects of channel fading and interference, for a broad spectrum of nonconvex loss functions. Our analysis shows that the AdaGrad-based algorithm converges to a stationary point at the rate of $\mathcal{O}( \ln{(T)} /{ T^{ 1 - \frac{1}{\alpha} } } )$, where $\alpha$ represents the tail index of the electromagnetic interference. This result indicates that the level of heavy-tailedness in interference distribution plays a crucial role in the training efficiency: the heavier the tail, the slower the algorithm converges. In contrast, an Adam-like algorithm converges at the $\mathcal{O}( 1/T )$ rate, demonstrating its advantage in expediting the model training process. We conduct extensive experiments that corroborate our theoretical findings and affirm the practical efficacy of our proposed federated adaptive gradient methods.
Abstract:Federated Learning (FL) has emerged as a privacy-preserving machine learning paradigm facilitating collaborative training across multiple clients without sharing local data. Despite advancements in edge device capabilities, communication bottlenecks present challenges in aggregating a large number of clients; only a portion of the clients can update their parameters upon each global aggregation. This phenomenon introduces the critical challenge of stragglers in FL and the profound impact of client scheduling policies on global model convergence and stability. Existing scheduling strategies address staleness but predominantly focus on either timeliness or content. Motivated by this, we introduce the novel concept of Version Age of Information (VAoI) to FL. Unlike traditional Age of Information metrics, VAoI considers both timeliness and content staleness. Each client's version age is updated discretely, indicating the freshness of information. VAoI is incorporated into the client scheduling policy to minimize the average VAoI, mitigating the impact of outdated local updates and enhancing the stability of FL systems.
Abstract:Personalized federated learning (PFL) has been widely investigated to address the challenge of data heterogeneity, especially when a single generic model is inadequate in satisfying the diverse performance requirements of local clients simultaneously. Existing PFL methods are inherently based on the idea that the relations between the generic global and personalized local models are captured by the similarity of model weights. Such a similarity is primarily based on either partitioning the model architecture into generic versus personalized components, or modeling client relationships via model weights. To better capture similar (yet distinct) generic versus personalized model representations, we propose \textit{spectral distillation}, a novel distillation method based on model spectrum information. Building upon spectral distillation, we also introduce a co-distillation framework that establishes a two-way bridge between generic and personalized model training. Moreover, to utilize the local idle time in conventional PFL, we propose a wait-free local training protocol. Through extensive experiments on multiple datasets over diverse heterogeneous data settings, we demonstrate the outperformance and efficacy of our proposed spectral co-distillation method, as well as our wait-free training protocol.
Abstract:Data possesses significant value as it fuels advancements in AI. However, protecting the privacy of the data generated by end-user devices has become crucial. Federated Learning (FL) offers a solution by preserving data privacy during training. FL brings the model directly to User Equipments (UEs) for local training by an access point (AP). The AP periodically aggregates trained parameters from UEs, enhancing the model and sending it back to them. However, due to communication constraints, only a subset of UEs can update parameters during each global aggregation. Consequently, developing innovative scheduling algorithms is vital to enable complete FL implementation and enhance FL convergence. In this paper, we present a scheduling policy combining Age of Update (AoU) concepts and data Shapley metrics. This policy considers the freshness and value of received parameter updates from individual data sources and real-time channel conditions to enhance FL's operational efficiency. The proposed algorithm is simple, and its effectiveness is demonstrated through simulations.
Abstract:Many real-time applications of the Internet of Things (IoT) need to deal with correlated information generated by multiple sensors. The design of efficient status update strategies that minimize the Age of Correlated Information (AoCI) is a key factor. In this paper, we consider an IoT network consisting of sensors equipped with the energy harvesting (EH) capability. We optimize the average AoCI at the data fusion center (DFC) by appropriately managing the energy harvested by sensors, whose true battery states are unobservable during the decision-making process. Particularly, we first formulate the dynamic status update procedure as a partially observable Markov decision process (POMDP), where the environmental dynamics are unknown to the DFC. In order to address the challenges arising from the causality of energy usage, unknown environmental dynamics, unobservability of sensors'true battery states, and large-scale discrete action space, we devise a deep reinforcement learning (DRL)-based dynamic status update algorithm. The algorithm leverages the advantages of the soft actor-critic and long short-term memory techniques. Meanwhile, it incorporates our proposed action decomposition and mapping mechanism. Extensive simulations are conducted to validate the effectiveness of our proposed algorithm by comparing it with available DRL algorithms for POMDPs.