Abstract:In this study, we investigate the resource management challenges in next-generation mobile crowdsensing networks with the goal of minimizing task completion latency while ensuring coverage performance, i.e., an essential metric to ensure comprehensive data collection across the monitored area, yet it has been commonly overlooked in existing studies. To this end, we formulate a weighted latency and coverage gap minimization problem via jointly optimizing user selection, subchannel allocation, and sensing task allocation. The formulated minimization problem is a non-convex mixed-integer programming issue. To facilitate the analysis, we decompose the original optimization problem into two subproblems. One focuses on optimizing sensing task and subband allocation under fixed sensing user selection, which is optimally solved by the Hungarian algorithm via problem reformulation. Building upon these findings, we introduce a time-efficient two-sided swapping method to refine the scheduled user set and enhance system performance. Extensive numerical results demonstrate the effectiveness of our proposed approach compared to various benchmark strategies.
Abstract:The digital twin edge network (DITEN) is a significant paradigm in the sixth-generation wireless system (6G) that aims to organize well-developed infrastructures to meet the requirements of evolving application scenarios. However, the impact of the interaction between the long-term DITEN maintenance and detailed digital twin tasks, which often entail privacy considerations, is commonly overlooked in current research. This paper addresses this issue by introducing a problem of digital twin association and historical data allocation for a federated learning (FL) task within DITEN. To achieve this goal, we start by introducing a closed-form function to predict the training accuracy of the FL task, referring to it as the data utility. Subsequently, we carry out comprehensive convergence analyses on the proposed FL methodology. Our objective is to jointly optimize the data utility of the digital twin-empowered FL task and the energy costs incurred by the long-term DITEN maintenance, encompassing FL model training, data synchronization, and twin migration. To tackle the aforementioned challenge, we present an optimization-driven learning algorithm that effectively identifies optimized solutions for the formulated problem. Numerical results demonstrate that our proposed algorithm outperforms various baseline approaches.
Abstract:In this letter, we investigate a coordinated multiple point (CoMP)-aided integrated sensing and communication (ISAC) system that supports multiple users and targets. Multiple base stations (BSs) employ a coordinated power allocation strategy to serve their associated single-antenna communication users (CUs) while utilizing the echo signals for joint radar target (RT) detection. The probability of detection (PoD) of the CoMP-ISAC system is then proposed for assessing the sensing performance. To maximize the sum rate while ensuring the PoD for each RT and adhering to the total transmit power budget across all BSs, we introduce an efficient power allocation strategy. Finally, simulation results are provided to validate the analytical findings, demonstrating that the proposed power allocation scheme effectively enhances the sum rate while satisfying the sensing requirements.
Abstract:In this letter, we investigate a dynamic reconfigurable distributed antenna and reflection surface (RDARS)-driven secure communication system, where the working mode of the RDARS can be flexibly configured. We aim to maximize the secrecy rate by jointly designing the active beamforming vectors, reflection coefficients, and the channel-aware mode selection matrix. To address the non-convex binary and cardinality constraints introduced by dynamic mode selection, we propose an efficient alternating optimization (AO) framework that employs penalty-based fractional programming (FP) and successive convex approximation (SCA) transformations. Simulation results demonstrate the potential of RDARS in enhancing the secrecy rate and show its superiority compared to existing reflection surface-based schemes.
Abstract:Feature-based image matching has extensive applications in computer vision. Keypoints detected in images can be naturally represented as graph structures, and Graph Neural Networks (GNNs) have been shown to outperform traditional deep learning techniques. Consequently, the paradigm of image matching via GNNs has gained significant prominence in recent academic research. In this paper, we first introduce an innovative adaptive graph construction method that utilizes a filtering mechanism based on distance and dynamic threshold similarity. This method dynamically adjusts the criteria for incorporating new vertices based on the characteristics of existing vertices, allowing for the construction of more precise and robust graph structures while avoiding redundancy. We further combine the vertex processing capabilities of GNNs with the global awareness capabilities of Transformers to enhance the model's representation of spatial and feature information within graph structures. This hybrid model provides a deeper understanding of the interrelationships between vertices and their contributions to the matching process. Additionally, we employ the Sinkhorn algorithm to iteratively solve for optimal matching results. Finally, we validate our system using extensive image datasets and conduct comprehensive comparative experiments. Experimental results demonstrate that our system achieves an average improvement of 3.8x-40.3x in overall matching performance. Additionally, the number of vertices and edges significantly impacts training efficiency and memory usage; therefore, we employ multi-GPU technology to accelerate the training process. Our code is available at https://github.com/songxf1024/GIMS.
Abstract:The convergence of digital twin technology and the emerging 6G network presents both challenges and numerous research opportunities. This article explores the potential synergies between digital twin and 6G, highlighting the key challenges and proposing fundamental principles for their integration. We discuss the unique requirements and capabilities of digital twin in the context of 6G networks, such as sustainable deployment, real-time synchronization, seamless migration, predictive analytic, and closed-loop control. Furthermore, we identify research opportunities for leveraging digital twin and artificial intelligence to enhance various aspects of 6G, including network optimization, resource allocation, security, and intelligent service provisioning. This article aims to stimulate further research and innovation at the intersection of digital twin and 6G, paving the way for transformative applications and services in the future.
Abstract:Semantic communications have been envisioned as a potential technique that goes beyond Shannon paradigm. Unlike modern communications that provide bit-level security, the eaves-dropping of semantic communications poses a significant risk of potentially exposing intention of legitimate user. To address this challenge, a novel deep neural network (DNN) enabled secure semantic communication (DeepSSC) system is developed by capitalizing on physical layer security. To balance the tradeoff between security and reliability, a two-phase training method for DNNs is devised. Particularly, Phase I aims at semantic recovery of legitimate user, while Phase II attempts to minimize the leakage of semantic information to eavesdroppers. The loss functions of DeepSSC in Phases I and II are respectively designed according to Shannon capacity and secure channel capacity, which are approximated with variational inference. Moreover, we define the metric of secure bilingual evaluation understudy (S-BLEU) to assess the security of semantic communications. Finally, simulation results demonstrate that DeepSSC achieves a significant boost to semantic security particularly in high signal-to-noise ratio regime, despite a minor degradation of reliability.
Abstract:The emerging immersive and autonomous services have posed stringent requirements on both communications and localization. By considering the great potential of reconfigurable intelligent surface (RIS), this paper focuses on the joint channel estimation and localization for RIS-aided wireless systems. As opposed to existing works that treat channel estimation and localization independently, this paper exploits the intrinsic coupling and nonlinear relationships between the channel parameters and user location for enhancement of both localization and channel reconstruction. By noticing the non-convex, nonlinear objective function and the sparser angle pattern, a variational Bayesian learning-based framework is developed to jointly estimate the channel parameters and user location through leveraging an effective approximation of the posterior distribution. The proposed framework is capable of unifying near-field and far-field scenarios owing to exploitation of sparsity of the angular domain. Since the joint channel and location estimation problem has a closed-form solution in each iteration, our proposed iterative algorithm performs better than the conventional particle swarm optimization (PSO) and maximum likelihood (ML) based ones in terms of computational complexity. Simulations demonstrate that the proposed algorithm almost reaches the Bayesian Cramer-Rao bound (BCRB) and achieves a superior estimation accuracy by comparing to the PSO and the ML algorithms.
Abstract:Learning the discriminative features of different faces is an important task in face recognition. By extracting face features in neural networks, it becomes easy to measure the similarity of different face images, which makes face recognition possible. To enhance the neural network's face feature separability, incorporating an angular margin during training is common practice. State-of-the-art loss functions CosFace and ArcFace apply fixed margins between weights of classes to enhance the inter-class separation of face features. Since the distribution of samples in the training set is imbalanced, similarities between different identities are unequal. Therefore, using an inappropriately fixed angular margin may lead to the problem that the model is difficult to converge or the face features are not discriminative enough. It is more in line with our intuition that the margins are angular adaptive, which could increase with the angles between classes growing. In this paper, we propose a new angular margin loss named X2-Softmax. X2-Softmax loss has adaptive angular margins, which provide the margin that increases with the angle between different classes growing. The angular adaptive margin ensures model flexibility and effectively improves the effect of face recognition. We have trained the neural network with X2-Softmax loss on the MS1Mv3 dataset and tested it on several evaluation benchmarks to demonstrate the effectiveness and superiority of our loss function.
Abstract:This paper introduces hybrid automatic repeat request with incremental redundancy (HARQ-IR) to boost the reliability of short packet communications. The finite blocklength information theory and correlated decoding events tremendously preclude the analysis of average block error rate (BLER). Fortunately, the recursive form of average BLER motivates us to calculate its value through the trapezoidal approximation and Gauss-Laguerre quadrature. Moreover, the asymptotic analysis is performed to derive a simple expression for the average BLER at high signal-to-noise ratio (SNR). Then, we study the maximization of long term average throughput (LTAT) via power allocation meanwhile ensuring the power and the BLER constraints. For tractability, the asymptotic BLER is employed to solve the problem through geometric programming (GP). However, the GP-based solution underestimates the LTAT at low SNR due to a large approximation error in this case. Alternatively, we also develop a deep reinforcement learning (DRL)-based framework to learn power allocation policy. In particular, the optimization problem is transformed into a constrained Markov decision process, which is solved by integrating deep deterministic policy gradient (DDPG) with subgradient method. The numerical results finally demonstrate that the DRL-based method outperforms the GP-based one at low SNR, albeit at the cost of increasing computational burden.