Abstract:In underwater acoustic (UWA) communication, orthogonal frequency division multiplexing (OFDM) is commonly employed to mitigate the inter-symbol interference (ISI) caused by delay spread. However, path-specific Doppler effects in UWA channels could result in significant inter-carrier interference (ICI) in the OFDM system. To address this problem, we introduce a multi-resolution convolutional neural network (CNN) named UWAModNet in this paper, designed to optimize the modem structure, specifically modulation and demodulation matrices. Based on a trade-off between the minimum and the average equivalent sub-channel rate, we propose an optimization criterion suitable to evaluate the performance of our learned modem. Additionally, a two-stage training strategy is developed to achieve quasi-optimal results. Simulations indicate that the learned modem outperforms zero-padded OFDM (ZP-OFDM) in terms of equivalent sub-channel rate and bit error rate, even under more severe Doppler effects during testing compared to training.
Abstract:The emerging concept of channel twinning (CT) has great potential to become a key enabler of ubiquitous connectivity in next-generation (xG) wireless systems. By fusing multimodal sensor data, CT advocates a high-fidelity and low-overhead channel acquisition paradigm, which is promising to provide accurate channel prediction in cross-domain and high-mobility scenarios of ubiquitous xG networks. However, the current literature lacks a universal CT architecture to address the challenges of heterogeneous scenarios, data, and resources in xG networks, which hinders the widespread deployment and applications of CT. This article discusses a new modularized CT architecture to bridge the barriers to scene recognition, cooperative sensing, and decentralized training. Based on the modularized design of CT, universal channel modeling, multimodal cooperative sensing, and lightweight twin modeling are described. Moreover, this article provides a concise definition, technical features, and case studies of CT, followed by potential applications of CT-empowered ubiquitous connectivity and some issues requiring future investigations.
Abstract:In this paper, a dynamic hybrid active-passive reconfigurable intelligent surface (HRIS) is proposed to further enhance the massive multiple-input-multiple-output (MIMO) system, since it supports the dynamic placement of active and passive elements. Specifically, considering the impact of the hardware impairments (HWIs), we investigate the channel-aware configuration of the receive antennas at the base station (BS) and the active/passive elements at the HRIS to improve the reliability of system. To this end, we investigate the average mean-square-error (MSE) minimization problem for the HRIS-aided massive MIMO system by jointly optimizing the BS receive antenna selection matrix, the reflection phase coefficients, the reflection amplitude matrix, and the mode selection matrix of the HRIS under the power budget of the HRIS. To tackle the non-convexity and intractability of this problem, we first transform the binary and discrete variables into continuous ones, and then propose a penalty-based exact block coordinate descent (BCD) algorithm to solve these subproblems alternately. Numerical simulations demonstrate the great superiority of the proposed scheme over the conventional benchmark schemes.
Abstract:The next generation wireless communication networks are required to support high-mobility scenarios, such as reliable data transmission for high-speed railways. Nevertheless, widely utilized multi-carrier modulation, the orthogonal frequency division multiplex (OFDM), cannot deal with the severe Doppler spread brought by high mobility. To address this problem, some new modulation schemes, e.g. orthogonal time frequency space and affine frequency division multiplexing, have been proposed with different design criteria from OFDM, which promote reliability with the cost of extremely high implementation complexity. On the other hand, end-to-end systems achieve excellent gains by exploiting neural networks to replace traditional transmitters and receivers, but have to retrain and update continually with channel varying. In this paper, we propose the Modem Network (ModNet) to design a novel modem scheme. Compared with end-to-end systems, channels are directly fed into the network and we can directly get a modem scheme through ModNet. Then, the Tri-Phase training strategy is proposed, which mainly utilizes the siamese structure to unify the learned modem scheme without retraining frequently faced up with time-varying channels. Simulation results show the proposed modem scheme outperforms OFDM systems under different highmobility channel statistics.
Abstract:Extremely large-scale antenna array (ELAA) is promising as one of the key ingredients for the sixth generation (6G) of wireless communications. The electromagnetic propagation of spherical wavefronts introduces an additional distance-dependent dimension beyond conventional beamspace. In this paper, we first present one concise closed-form channel formulation for extremely large-scale multiple-input multiple-output (XL-MIMO). All line-of-sight (LoS) and non-line-of-sight (NLoS) paths, far-field and near-field scenarios, and XL-MIMO and XL-MISO channels are unified under the framework, where additional Vandermonde windowing matrix is exclusively considered for LoS path. Under this framework, we further propose one low-complexity unified LoS/NLoS orthogonal matching pursuit (XL-UOMP) algorithm for XL-MIMO channel estimation. The simulation results demonstrate the superiority of the proposed algorithm on both estimation accuracy and pilot consumption.
Abstract:Considering the appealing distribution gains of distributed antenna systems (DAS) and passive gains of reconfigurable intelligent surface (RIS), a flexible reconfigurable architecture called reconfigurable distributed antenna and reflecting surface (RDARS) is proposed. RDARS encompasses DAS and RIS as two special cases and maintains the advantages of distributed antennas while reducing the hardware cost by replacing some active antennas with low-cost passive reflecting surfaces. In this paper, we present a RDARS-aided uplink multi-user communication system and investigate the system transmission reliability with the newly proposed architecture. Specifically, in addition to the distribution gain and the reflection gain provided by the connection and reflection modes, respectively, we also consider the dynamic mode switching of each element which introduces an additional degree of freedom (DoF) and thus results in a selection gain. As such, we aim to minimize the total sum mean-square-error (MSE) of all data streams by jointly optimizing the receive beamforming matrix, the reflection phase shifts and the channel-aware placement of elements in the connection mode. To tackle this nonconvex problem with intractable binary and cardinality constraints, we propose an inexact block coordinate descent (BCD) based penalty dual decomposition (PDD) algorithm with the guaranteed convergence. Since the PDD algorithm usually suffers from high computational complexity, a low-complexity greedy-search-based alternating optimization (AO) algorithm is developed to yield a semi-closed-form solution with acceptable performance. Numerical results demonstrate the superiority of the proposed architecture compared to the conventional fully passive RIS or DAS. Furthermore, some insights about the practical implementation of RDARS are provided.
Abstract:This paper presents a new integrated sensing and communication (ISAC) framework, leveraging the recent advancements of reconfigurable distributed antenna and reflecting surface (RDARS). RDARS is a programmable surface structure comprising numerous elements, each of which can be flexibly configured to operate either in a reflection mode, resembling a passive reconfigurable intelligent surface (RIS), or in a connected mode, functioning as a remote transmit or receive antenna. Our RDARS-aided ISAC framework effectively mitigates the adverse impact of multiplicative fading when compared to the passive RIS-aided ISAC, and reduces cost and energy consumption when compared to the active RIS-aided ISAC. Within our RDARS-aided ISAC framework, we consider a radar output signal-to-noise ratio (SNR) maximization problem under communication constraints to jointly optimize the active transmit beamforming matrix of the base station (BS), the reflection and mode selection matrices of RDARS, and the receive filter. To tackle the inherent non-convexity and the binary integer optimization introduced by the mode selection in this optimization challenge, we propose an efficient iterative algorithm with proved convergence based on majorization minimization (MM) and penalty-based methods.Numerical and simulation results demonstrate the superior performance of our new framework, and clearly verify substantial distribution, reflection as well as selection gains obtained by properly configuring the RDARS.
Abstract:Automatic Modulation Recognition (AMR) plays a crucial role in wireless communication systems. Deep learning AMR strategies have achieved tremendous success in recent years. Modulated signals exhibit long temporal dependencies, and extracting global features is crucial in identifying modulation schemes. Traditionally, human experts analyze patterns in constellation diagrams to classify modulation schemes. Classical convolutional-based networks, due to their limited receptive fields, excel at extracting local features but struggle to capture global relationships. To address this limitation, we introduce a novel hybrid deep framework named TLDNN, which incorporates the architectures of the transformer and long short-term memory (LSTM). We utilize the self-attention mechanism of the transformer to model the global correlations in signal sequences while employing LSTM to enhance the capture of temporal dependencies. To mitigate the impact like RF fingerprint features and channel characteristics on model generalization, we propose data augmentation strategies known as segment substitution (SS) to enhance the model's robustness to modulation-related features. Experimental results on widely-used datasets demonstrate that our method achieves state-of-the-art performance and exhibits significant advantages in terms of complexity. Our proposed framework serves as a foundational backbone that can be extended to different datasets. We have verified the effectiveness of our augmentation approach in enhancing the generalization of the models, particularly in few-shot scenarios. Code is available at \url{https://github.com/AMR-Master/TLDNN}.
Abstract:Accurate channel state information (CSI) is essential for downlink precoding at the base station (BS), especially for frequency FDD wideband massive MIMO systems with OFDM. In FDD systems, CSI is attained through CSI feedback from the user equipment (UE). However, large-scale antennas and large number of subcarriers significantly increase CSI feedback overhead. Deep learning-based CSI feedback methods have received tremendous attention in recent years due to their great capability of compressing CSI. Nonetheless, large amounts of collected samples are required to train deep learning models, which is severely challenging in practice. Besides, with the rapidly increasing number of antennas and subcarriers, most of these deep learning methods' CSI feedback overhead also grow dramatically, owing to their focus on full-dimensional CSI feedback. To address this issue, in this paper, we propose a low-overhead Incorporation-Extrapolation based Few-Shot CSI feedback Framework (IEFSF) for massive MIMO systems. To further reduce the feedback overhead, a low-dimensional eigenvector-based CSI matrix is first formed with the incorporation process at the UE, and then recovered to the full-dimensional eigenvector-based CSI matrix at the BS via the extrapolation process. After that, to alleviate the necessity of the extensive collected samples and enable few-shot CSI feedback, we further propose a knowledge-driven data augmentation method and an artificial intelligence-generated content (AIGC) -based data augmentation method by exploiting the domain knowledge of wireless channels and by exploiting a novel generative model, respectively. Numerical results demonstrate that the proposed IEFSF can significantly reduce CSI feedback overhead by 16 times compared with existing CSI feedback methods while maintaining higher feedback accuracy using only several hundreds of collected samples.
Abstract:In this work, we consider a status update system with a sensor and a receiver. The status update information is sampled by the sensor and then forwarded to the receiver through a channel with non-stationary delay distribution. The data freshness at the receiver is quantified by the Age-of-Information (AoI). The goal is to design an online sampling strategy that can minimize the average AoI when the non-stationary delay distribution is unknown. Assuming that channel delay distribution may change over time, to minimize the average AoI, we propose a joint stochastic approximation and non-parametric change point detection algorithm that can: (1) learn the optimum update threshold when the delay distribution remains static; (2) detect the change in transmission delay distribution quickly and then restart the learning process. Simulation results show that the proposed algorithm can quickly detect the delay changes, and the average AoI obtained by the proposed policy converges to the minimum AoI.