The emerging concept of channel twinning (CT) has great potential to become a key enabler of ubiquitous connectivity in next-generation (xG) wireless systems. By fusing multimodal sensor data, CT advocates a high-fidelity and low-overhead channel acquisition paradigm, which is promising to provide accurate channel prediction in cross-domain and high-mobility scenarios of ubiquitous xG networks. However, the current literature lacks a universal CT architecture to address the challenges of heterogeneous scenarios, data, and resources in xG networks, which hinders the widespread deployment and applications of CT. This article discusses a new modularized CT architecture to bridge the barriers to scene recognition, cooperative sensing, and decentralized training. Based on the modularized design of CT, universal channel modeling, multimodal cooperative sensing, and lightweight twin modeling are described. Moreover, this article provides a concise definition, technical features, and case studies of CT, followed by potential applications of CT-empowered ubiquitous connectivity and some issues requiring future investigations.