In this paper, a dynamic hybrid active-passive reconfigurable intelligent surface (HRIS) is proposed to further enhance the massive multiple-input-multiple-output (MIMO) system, since it supports the dynamic placement of active and passive elements. Specifically, considering the impact of the hardware impairments (HWIs), we investigate the channel-aware configuration of the receive antennas at the base station (BS) and the active/passive elements at the HRIS to improve the reliability of system. To this end, we investigate the average mean-square-error (MSE) minimization problem for the HRIS-aided massive MIMO system by jointly optimizing the BS receive antenna selection matrix, the reflection phase coefficients, the reflection amplitude matrix, and the mode selection matrix of the HRIS under the power budget of the HRIS. To tackle the non-convexity and intractability of this problem, we first transform the binary and discrete variables into continuous ones, and then propose a penalty-based exact block coordinate descent (BCD) algorithm to solve these subproblems alternately. Numerical simulations demonstrate the great superiority of the proposed scheme over the conventional benchmark schemes.