Abstract:Semantic communications have been envisioned as a potential technique that goes beyond Shannon paradigm. Unlike modern communications that provide bit-level security, the eaves-dropping of semantic communications poses a significant risk of potentially exposing intention of legitimate user. To address this challenge, a novel deep neural network (DNN) enabled secure semantic communication (DeepSSC) system is developed by capitalizing on physical layer security. To balance the tradeoff between security and reliability, a two-phase training method for DNNs is devised. Particularly, Phase I aims at semantic recovery of legitimate user, while Phase II attempts to minimize the leakage of semantic information to eavesdroppers. The loss functions of DeepSSC in Phases I and II are respectively designed according to Shannon capacity and secure channel capacity, which are approximated with variational inference. Moreover, we define the metric of secure bilingual evaluation understudy (S-BLEU) to assess the security of semantic communications. Finally, simulation results demonstrate that DeepSSC achieves a significant boost to semantic security particularly in high signal-to-noise ratio regime, despite a minor degradation of reliability.
Abstract:This work studies the beamforming design in the joint target sensing and proactive eavesdropping (JTSAPE) system. The JTSAPE base station (BS) receives the information transmitted by the illegal transmitter and transmits the waveform for target sensing. The shared waveform also serves as artificial noise to interfere with the illegal receiver, thereby achieving proactive eavesdropping. We firstly optimize the transmitting beam of the BS to maximize the eavesdropping signal-to-interference-plus-noise ratio or minimize the target estimation parameter Cram{\'{e}}r-Rao bound, respectively. Then, the joint optimization of proactive eavesdropping and target sensing is investigated, and the normalized weighted optimization problem is formulated. To address the complexity of the original problem, the formulated problem is decomposed into two subproblems: proactive eavesdropping and target sensing, which are solved by the semi-definite relaxation technique. Furthermore, the scenario in which the quality of the eavesdropping channel is stronger than that of the illegal channel is considered. We utilize the sequential rank-one constraint relaxation method and iteration technique to obtain the high-quality suboptimal solution of the beam transmit covariance matrix. Numerical simulation shows the effectiveness of our proposed algorithm.
Abstract:In this work, a delay-tolerant unmanned aerial vehicle (UAV) relayed covert and secure communication framework is investigated. In this framework, a legitimate UAV serves as an aerial relay to realize communication when the direct link between the terrestrial transmitter and receiver is blocked and also acts as a friendly jammer to suppress the malicious nodes presented on the ground. Subsequently, considering the uncertainty of malicious nodes' positions, a robust fractional programming optimization problem is built to maximize energy efficiency by jointly optimizing the trajectory of the UAV, the transmit power of the transmitter, and the time-switching factor. For the extremely complicated covert constraint, Pinsker's inequality, Jensen's inequality, and the bisection search method are employed to construct a tractable shrunken one. After this, an alternate optimization-based algorithm is proposed to solve the fractional programming optimization problem. To achieve low complexity, we design the primal-dual search-based algorithm and the successive convex approximation-based algorithm, respectively, for each sub-problem. Numerical results show the effectiveness of our proposed algorithm.
Abstract:Unmanned aerial vehicles (UAVs) have been attracting significant attention because there is a high probability of line-of-sight links being obtained between them and terrestrial nodes in high-rise urban areas. In this work, we investigate cognitive radio networks (CRNs) by jointly designing three-dimensional (3D) trajectory, the transmit power of the UAV, and user scheduling. Considering the UAV's onboard energy consumption, an optimization problem is formulated in which the average achievable rate of the considered system is maximized by jointly optimizing the UAV's 3D trajectory, transmission power, and user scheduling. Due to the non-convex optimization problem, a lower bound on the average achievable rate is utilized to reduce the complexity of the solution. Subsequently, the original optimization problem is decoupled into four subproblems by using block coordinate descent, and each subproblem is transformed into manageable convex optimization problems by introducing slack variables and successive convex approximation. Numerical results validate the effectiveness of our proposed algorithm and demonstrate that the 3D trajectories of UAVs can enhance the average achievable rate of aerial CRNs.
Abstract:Unmanned aerial vehicles (UAVs) can provide wireless access to terrestrial users, regardless of geographical constraints, and will be an important part of future communication systems. In this paper, a multi-user downlink dual-UAVs enabled covert communication system was investigated, in which a UAV transmits secure information to ground users in the presence of multiple wardens as well as a friendly jammer UAV transmits artificial jamming signals to fight with the wardens. The scenario of wardens being outfitted with a single antenna is considered, and the detection error probability (DEP) of wardens with finite observations is researched. Then, considering the uncertainty of wardens' location, a robust optimization problem with worst-case covertness constraint is formulated to maximize the average covert rate by jointly optimizing power allocation and trajectory. To cope with the optimization problem, an algorithm based on successive convex approximation methods is proposed. Thereafter, the results are extended to the case where all the wardens are equipped with multiple antennas. After analyzing the DEP in this scenario, a tractable lower bound of the DEP is obtained by utilizing Pinsker's inequality. Subsequently, the non-convex optimization problem was established and efficiently coped by utilizing a similar algorithm as in the single-antenna scenario. Numerical results indicate the effectiveness of our proposed algorithm.
Abstract:Unmanned aerial vehicles (UAVs) can provide wireless access services to terrestrial users without geographical limitations and will become an essential part of the future communication system. However, the openness of wireless channels and the mobility of UAVs make the security of UAV-based communication systems particularly challenging. This work investigates the security of aerial cognitive radio networks (CRNs) with multiple uncertainties colluding eavesdroppers. A cognitive aerial base station transmits messages to cognitive terrestrial users using the spectrum resource of the primary users. All secondary terrestrial users and illegitimate receivers jointly decode the received message. The average secrecy rate of the aerial CRNs is maximized by jointly optimizing the UAV's trajectory and transmission power. An iterative algorithm based on block coordinate descent and successive convex approximation is proposed to solve the non-convex mixed-variable optimization problem. Numerical results verify the effectiveness of our proposed algorithm and show that our scheme improves the secrecy performance of airborne CRNs.
Abstract:The complex transmission mechanism of cross-packet hybrid automatic repeat request (XP-HARQ) hinders its optimal system design. To overcome this difficulty, this letter attempts to use the deep reinforcement learning (DRL) to solve the rate selection problem of XP-HARQ over correlated fading channels. In particular, the long term average throughput (LTAT) is maximized by properly choosing the incremental information rate for each HARQ round on the basis of the outdated channel state information (CSI) available at the transmitter. The rate selection problem is first converted into a Markov decision process (MDP), which is then solved by capitalizing on the algorithm of deep deterministic policy gradient (DDPG) with prioritized experience replay. The simulation results finally corroborate the superiority of the proposed XP-HARQ scheme over the conventional HARQ with incremental redundancy (HARQ-IR) and the XP-HARQ with only statistical CSI.
Abstract:In this paper, we analyze the outage performance of unmanned aerial vehicles (UAVs)-enabled downlink non-orthogonal multiple access (NOMA) communication systems with the semi-grant-free (SGF) transmission scheme. A UAV provides coverage services for a grant-based (GB) user and one user is allowed to utilize the same channel resource opportunistically. The hybrid successive interference cancellation scheme is implemented in the downlink NOMA scenarios for the first time. The analytical expressions for the exact and asymptotic outage probability (OP) of the grant-free (GF) user are derived. The results demonstrate that no-zero diversity order can be achieved only under stringent conditions on users' quality of service requirements. Subsequently, we propose an efficient dynamic power allocation (DPA) scheme to relax such data rate constraints to address this issue. The analytical expressions for the exact and asymptotic OP of the GF user with the DPA scheme are derived. Finally, Monte Carlo simulation results are presented to validate the correctness of the derived analytical expressions and demonstrate the effects of the UAV's location and altitude on the OP of the GF user.
Abstract:Unmanned aerial vehicles (UAVs) have been widely employed to enhance the end-to-end performance of wireless communications since the links between UAVs and terrestrial nodes are line-of-sight (LoS) with high probability. However, the broadcast characteristics of signal propagation in LoS links make it vulnerable to being wiretapped by malicious eavesdroppers, which poses a considerable challenge to the security of wireless communications. This paper investigates the security of aerial cognitive radio networks (CRNs). An airborne base station transmits confidential messages to secondary users utilizing the same spectrum as the primary network. An aerial base station transmits jamming signals to suppress the eavesdropper to enhance secrecy performance. The uncertainty of eavesdropping node locations is considered, and the average secrecy rate of the cognitive user is maximized by optimizing multiple users' scheduling, the UAVs' trajectory, and transmit power. To solve the non-convex optimization problem with mixed multiple integers variable problem, we propose an iterative algorithm based on block coordinate descent and successive convex approximation. Numerical results verify the effectiveness of our proposed algorithm and demonstrate that our scheme is beneficial to improving the secrecy performance of aerial CRNs.