Abstract:Accurate indoor localization remains challenging due to variations in wireless signal environments and limited data availability. This paper introduces MetaGraphLoc, a novel system leveraging sensor fusion, graph neural networks (GNNs), and meta-learning to overcome these limitations. MetaGraphLoc integrates received signal strength indicator measurements with inertial measurement unit data to enhance localization accuracy. Our proposed GNN architecture, featuring dynamic edge construction (DEC), captures the spatial relationships between access points and underlying data patterns. MetaGraphLoc employs a meta-learning framework to adapt the GNN model to new environments with minimal data collection, significantly reducing calibration efforts. Extensive evaluations demonstrate the effectiveness of MetaGraphLoc. Data fusion reduces localization error by 15.92%, underscoring its importance. The GNN with DEC outperforms traditional deep neural networks by up to 30.89%, considering accuracy. Furthermore, the meta-learning approach enables efficient adaptation to new environments, minimizing data collection requirements. These advancements position MetaGraphLoc as a promising solution for indoor localization, paving the way for improved navigation and location-based services in the ever-evolving Internet of Things networks.
Abstract:In this era of advanced communication technologies, many remote rural and hard-to-reach areas still lack Internet access due to technological, geographical, and economic challenges. The TV white space (TVWS) technology has proven to be effective and feasible in connecting these areas to Internet service in many parts of the world. The TVWS-based systems operate based on geolocation white space databases (WSDB) to protect the primary systems from harmful interference and thus there is a critical need to know the available and usable channels that can be used by the secondary white space devices (WSDs) in a specific geographic area. In this work, we developed a generalized and flexible graphical user interface (GUI) tool to evaluate the availability and usability of the TVWS channels and their noise levels at each geographic location within the analyzed area. The developed tool has many features and capabilities such as allowing the users to scan the TVWS spectrum for any geographic area in the world and any frequency band in the TVWS spectrum. Moreover, it allows the user to apply widely used terrain-based radio propagation models. It provides the flexibility to import the elevation terrain profile of any region with the desired spatial accuracy and resolution. In addition, various system parameters including those related to regulation rules can be modified in the tool. This tool exports to an external dataset file the output data of the available and usable TVWS channels and their noise levels and it also visualizes these data interactively.
Abstract:Natural Language Processing (NLP) operations, such as semantic sentiment analysis and text synthesis, may often impair users' privacy and demand significant on device computational resources. Centralized learning (CL) on the edge offers an alternative energy-efficient approach, yet requires the collection of raw information, which affects the user's privacy. While Federated learning (FL) preserves privacy, it requires high computational energy on board tiny user devices. We introduce split learning (SL) as an energy-efficient alternative, privacy-preserving tiny machine learning (TinyML) scheme and compare it to FL and CL in the presence of Rayleigh fading and additive noise. Our results show that SL reduces processing power and CO2 emissions while maintaining high accuracy, whereas FL offers a balanced compromise between efficiency and privacy. Hence, this study provides insights into deploying energy-efficient, privacy-preserving NLP models on edge devices.
Abstract:In this study, we statistically analyze the performance of a threshold-based multiple optical signal selection scheme (TMOS) for wavelength division multiplexing (WDM) and adaptive coded modulation (ACM) using free space optical (FSO) communication between mobile platforms in maritime environments with fog and 3D pointing errors. Specifically, we derive a new closed-form expression for a composite probability density function (PDF) that is more appropriate for applying various algorithms to FSO systems under the combined effects of fog and pointing errors. We then analyze the outage probability, average spectral efficiency (ASE), and bit error rate (BER) performance of the conventional detection techniques (i.e., heterodyne and intensity modulation/direct detection). The derived analytical results were cross-verified using Monte Carlo simulations. The results show that we can obtain a higher ASE performance by applying TMOS-based WDM and ACM and that the probability of the beam being detected in the photodetector increased at a low signal-to-noise ratio, contrary to conventional performance. Furthermore, it has been confirmed that applying WDM and ACM is suitable, particularly in maritime environments where channel conditions frequently change.
Abstract:The emerging field of smart agriculture leverages the Internet of Things (IoT) to revolutionize farming practices. This paper investigates the transformative potential of Long Range (LoRa) technology as a key enabler of long-range wireless communication for agricultural IoT systems. By reviewing existing literature, we identify a gap in research specifically focused on LoRa's prospects and challenges from a communication perspective in smart agriculture. We delve into the details of LoRa-based agricultural networks, covering network architecture design, Physical Layer (PHY) considerations tailored to the agricultural environment, and channel modeling techniques that account for soil characteristics. The paper further explores relaying and routing mechanisms that address the challenges of extending network coverage and optimizing data transmission in vast agricultural landscapes. Transitioning to practical aspects, we discuss sensor deployment strategies and energy management techniques, offering insights for real-world deployments. A comparative analysis of LoRa with other wireless communication technologies employed in agricultural IoT applications highlights its strengths and weaknesses in this context. Furthermore, the paper outlines several future research directions to leverage the potential of LoRa-based agriculture 4.0. These include advancements in channel modeling for diverse farming environments, novel relay routing algorithms, integrating emerging sensor technologies like hyper-spectral imaging and drone-based sensing, on-device Artificial Intelligence (AI) models, and sustainable solutions. This survey can guide researchers, technologists, and practitioners to understand, implement, and propel smart agriculture initiatives using LoRa technology.
Abstract:Civilian communication during disasters such as earthquakes, floods, and military conflicts is crucial for saving lives. Nevertheless, several challenges exist during these circumstances such as the destruction of cellular communication and electricity infrastructure, lack of line of sight (LoS), and difficulty of localization under the rubble. In this article, we discuss key enablers that can boost communication during disasters, namely, satellite and aerial platforms, redundancy, silencing, and sustainable networks aided with wireless energy transfer (WET). The article also highlights how these solutions can be implemented in order to solve the failure of communication during disasters. Finally, it sheds light on unresolved challenges, as well as future research directions.
Abstract:This paper presents a performance analysis of two distinct techniques for antenna selection and precoding in downlink multi-user massive multiple-input single-output systems with limited dynamic range power amplifiers. Both techniques are derived from the original formulation of the regularized-zero forcing precoder, designed as the solution to minimizing a regularized distortion. Based on this, the first technique, called the $\ell_1$-norm precoder, adopts an $\ell_1$-norm regularization term to encourage sparse solutions, thereby enabling antenna selection. The second technique, termed the thresholded $\ell_1$-norm precoder, involves post-processing the precoder solution obtained from the first method by applying an entry-wise thresholding operation. This work conducts a precise performance analysis to compare these two techniques. The analysis leverages the Gaussian min-max theorem which is effective for examining the asymptotic behavior of optimization problems without explicit solutions. While the analysis of the $\ell_1$-norm precoder follows the conventional Gaussian min-max theorem framework, understanding the thresholded $\ell_1$-norm precoder is more complex due to the non-linear behavior introduced by the thresholding operation. To address this complexity, we develop a novel Gaussian min-max theorem tailored to these scenarios. We provide precise asymptotic behavior analysis of the precoders, focusing on metrics such as received signal-to-noise and distortion ratio and bit error rate. Our analysis demonstrates that the thresholded $\ell_1$-norm precoder can offer superior performance when the threshold parameter is carefully selected. Simulations confirm that the asymptotic results are accurate for systems equipped with hundreds of antennas at the base station, serving dozens of user terminals.
Abstract:As advancements close the gap between current device capabilities and the requirements for terahertz (THz)-band communications, the demand for terabit-per-second (Tbps) circuits is on the rise. This paper addresses the challenge of achieving Tbps data rates in THz-band communications by focusing on the baseband computation bottleneck. We propose leveraging parallel processing and pseudo-soft information (PSI) across multicarrier THz channels for efficient channel code decoding. We map bits to transmission resources using shorter code-words to enhance parallelizability and reduce complexity. Additionally, we integrate channel state information into PSI to alleviate the processing overhead of soft decoding. Results demonstrate that PSI-aided decoding of 64-bit code-words halves the complexity of 128-bit hard decoding under comparable effective rates, while introducing a 4 dB gain at a $10^{-3}$ block error rate. The proposed scheme approximates soft decoding with significant complexity reduction at a graceful performance cost.
Abstract:The precision of link-level theoretical performance analysis for emerging wireless communication paradigms is critical. Recent studies have demonstrated the excellent fitting capabilities of the mixture gamma (MG) distribution in representing small-scale fading in outdoor terahertz (THz)-band scenarios. Our study establishes an in-depth performance analysis for outdoor point-to-point THz links under realistic configurations, incorporating MG small-scale fading combined with the misalignment effect. We derive closed-form expressions for the bit-error probability, outage probability, and ergodic capacity. Furthermore, we conduct an asymptotic analysis of these metrics at high signal-to-noise ratios and derive the necessary convergence conditions. Simulation results, leveraging precise measurement-based channel parameters in various configurations, closely align with the derived analytical equations.
Abstract:As urban air mobility (UAM) emerges as a transformative solution to urban transportation, the demand for robust communication frameworks capable of supporting high-density aerial traffic becomes increasingly critical. An essential area of communications improvement is reliably characterizing and minimizing interference on UAM aircraft from other aircraft and ground vehicles. To achieve this, reliable and accurate line-of-sight (LOS) models must be used. In this work, we highlight the limitations of a LOS probability model extensively used in the literature in accurately predicting interference caused by smart ground vehicles. Then, we introduce a novel probability of LOS model that improves interference prediction by incorporating the urban topography and the dynamic positioning of ground vehicles on streets. Our model's parameters are derived from extensive simulations and validated through real-world urban settings to ensure reliability and applicability.