Abstract:This paper proposes a novel communication system framework based on a reconfigurable intelligent surface (RIS)-aided integrated sensing, communication, and power transmission (ISCPT) communication system. RIS is used to improve transmission efficiency and sensing accuracy. In addition, non-orthogonal multiple access (NOMA) technology is incorporated in RIS-aided ISCPT systems to boost the spectrum utilization efficiency of RIS-aided ISCPT systems. We consider the power minimization problem of the RIS-aided ISCPT-NOMA system. Power minimization is achieved by jointly optimizing the RIS phase shift, decoding order, power splitting (PS) factor, and transmit beamforming while satisfying quality of service (QoS), radar target sensing accuracy, and energy harvesting constraints. Since the objective function and constraints in the optimization problem are non-convex, the problem is an NP-hard problem. To solve the non-convex problem, this paper proposes a block coordinate descent (BCD) algorithm. Specifically, the non-convex problem is divided into four sub-problems: i.e. the transmit beamforming, RIS phase shift, decoding order and PS factor optimization subproblems. We employ semidefinite relaxation (SDR) and successive convex approximation (SCA) techniques to address the transmit beamforming optimization sub-problem. Subsequently, we leverage the alternating direction method of multipliers (ADMM) algorithm to solve the RIS phase shift optimization problem. As for the decoding order optimization, we provide a closed-form expression. For the PS factor optimization problem, the SCA algorithm is proposed. Simulation results illustrate the effectiveness of our proposed algorithm and highlight the balanced performance achieved across sensing, communication, and power transfer.
Abstract:In this paper, we explore perpetual, scalable, Low-powered Wide-area networks (LPWA). Specifically we focus on the uplink transmissions of non-orthogonal multiple access (NOMA)-based LPWA networks consisting of multiple self-powered nodes and a NOMA-based single gateway. The self-powered LPWA nodes use the "harvest-then-transmit" protocol where they harvest energy from ambient sources (solar and radio frequency signals), then transmit their signals. The main features of the studied LPWA network are different transmission times-on-air, multiple uplink transmission attempts, and duty cycle restrictions. The aim of this work is to maximize the time-averaged sum of the uplink transmission rates by optimizing the transmission time-on-air allocation, the energy harvesting time allocation and the power allocation; subject to a maximum transmit power and to the availability of the harvested energy. We propose a low complex solution which decouples the optimization problem into three sub-problems: we assign the LPWA node transmission times (using either the fair or unfair approaches), we optimize the energy harvesting (EH) times using a one-dimensional search method, and optimize the transmit powers using a concave-convex (CCCP) procedure. In the simulation results, we focus on Long Range (LoRa) networks as a practical example LPWA network. We validate our proposed solution and we observe a $15\%$ performance improvement when using NOMA.