Abstract:This work studies the beamforming design in the joint target sensing and proactive eavesdropping (JTSAPE) system. The JTSAPE base station (BS) receives the information transmitted by the illegal transmitter and transmits the waveform for target sensing. The shared waveform also serves as artificial noise to interfere with the illegal receiver, thereby achieving proactive eavesdropping. We firstly optimize the transmitting beam of the BS to maximize the eavesdropping signal-to-interference-plus-noise ratio or minimize the target estimation parameter Cram{\'{e}}r-Rao bound, respectively. Then, the joint optimization of proactive eavesdropping and target sensing is investigated, and the normalized weighted optimization problem is formulated. To address the complexity of the original problem, the formulated problem is decomposed into two subproblems: proactive eavesdropping and target sensing, which are solved by the semi-definite relaxation technique. Furthermore, the scenario in which the quality of the eavesdropping channel is stronger than that of the illegal channel is considered. We utilize the sequential rank-one constraint relaxation method and iteration technique to obtain the high-quality suboptimal solution of the beam transmit covariance matrix. Numerical simulation shows the effectiveness of our proposed algorithm.
Abstract:In this work, a delay-tolerant unmanned aerial vehicle (UAV) relayed covert and secure communication framework is investigated. In this framework, a legitimate UAV serves as an aerial relay to realize communication when the direct link between the terrestrial transmitter and receiver is blocked and also acts as a friendly jammer to suppress the malicious nodes presented on the ground. Subsequently, considering the uncertainty of malicious nodes' positions, a robust fractional programming optimization problem is built to maximize energy efficiency by jointly optimizing the trajectory of the UAV, the transmit power of the transmitter, and the time-switching factor. For the extremely complicated covert constraint, Pinsker's inequality, Jensen's inequality, and the bisection search method are employed to construct a tractable shrunken one. After this, an alternate optimization-based algorithm is proposed to solve the fractional programming optimization problem. To achieve low complexity, we design the primal-dual search-based algorithm and the successive convex approximation-based algorithm, respectively, for each sub-problem. Numerical results show the effectiveness of our proposed algorithm.
Abstract:Unmanned aerial vehicles (UAVs) have been attracting significant attention because there is a high probability of line-of-sight links being obtained between them and terrestrial nodes in high-rise urban areas. In this work, we investigate cognitive radio networks (CRNs) by jointly designing three-dimensional (3D) trajectory, the transmit power of the UAV, and user scheduling. Considering the UAV's onboard energy consumption, an optimization problem is formulated in which the average achievable rate of the considered system is maximized by jointly optimizing the UAV's 3D trajectory, transmission power, and user scheduling. Due to the non-convex optimization problem, a lower bound on the average achievable rate is utilized to reduce the complexity of the solution. Subsequently, the original optimization problem is decoupled into four subproblems by using block coordinate descent, and each subproblem is transformed into manageable convex optimization problems by introducing slack variables and successive convex approximation. Numerical results validate the effectiveness of our proposed algorithm and demonstrate that the 3D trajectories of UAVs can enhance the average achievable rate of aerial CRNs.
Abstract:Unmanned aerial vehicles (UAVs) can provide wireless access services to terrestrial users without geographical limitations and will become an essential part of the future communication system. However, the openness of wireless channels and the mobility of UAVs make the security of UAV-based communication systems particularly challenging. This work investigates the security of aerial cognitive radio networks (CRNs) with multiple uncertainties colluding eavesdroppers. A cognitive aerial base station transmits messages to cognitive terrestrial users using the spectrum resource of the primary users. All secondary terrestrial users and illegitimate receivers jointly decode the received message. The average secrecy rate of the aerial CRNs is maximized by jointly optimizing the UAV's trajectory and transmission power. An iterative algorithm based on block coordinate descent and successive convex approximation is proposed to solve the non-convex mixed-variable optimization problem. Numerical results verify the effectiveness of our proposed algorithm and show that our scheme improves the secrecy performance of airborne CRNs.
Abstract:For the development of new digital signal processing systems and services, the rapid, easy, and convenient prototyping of ideas and the rapid time-to-market of products are becoming important with advances in technology. Conventionally, for the development stage, particularly when confirming the feasibility or performance of a new system or service, an idea is first confirmed through a computerbased software simulation after developing an accurate model of the operating environment. Next, this idea is validated and tested in the real operating environment. The new systems or services and their operating environments are becoming increasingly complicated. Hence, their development processes too are more complex cost- and time-intensive tasks that require engineers with skill and professional knowledge/experience. Furthermore, for ensuring fast time-to-market, all the development processes encompassing the (i) algorithm development, (ii) product prototyping, and (iii) final product development, must be closely linked such that they can be quickly completed. In this context, the aim of this paper is to propose an ultrahigh bandwidth software-defined radio platform that can prototype a quasi-real-time operating system without a developer having sophisticated hardware/software expertise. This platform allows the realization of a software-implemented digital signal processing system in minimal time with minimal efforts and without the need of a host computer.
Abstract:In this paper, we analyze the outage performance of unmanned aerial vehicles (UAVs)-enabled downlink non-orthogonal multiple access (NOMA) communication systems with the semi-grant-free (SGF) transmission scheme. A UAV provides coverage services for a grant-based (GB) user and one user is allowed to utilize the same channel resource opportunistically. The hybrid successive interference cancellation scheme is implemented in the downlink NOMA scenarios for the first time. The analytical expressions for the exact and asymptotic outage probability (OP) of the grant-free (GF) user are derived. The results demonstrate that no-zero diversity order can be achieved only under stringent conditions on users' quality of service requirements. Subsequently, we propose an efficient dynamic power allocation (DPA) scheme to relax such data rate constraints to address this issue. The analytical expressions for the exact and asymptotic OP of the GF user with the DPA scheme are derived. Finally, Monte Carlo simulation results are presented to validate the correctness of the derived analytical expressions and demonstrate the effects of the UAV's location and altitude on the OP of the GF user.
Abstract:Unmanned aerial vehicles (UAVs) have been widely employed to enhance the end-to-end performance of wireless communications since the links between UAVs and terrestrial nodes are line-of-sight (LoS) with high probability. However, the broadcast characteristics of signal propagation in LoS links make it vulnerable to being wiretapped by malicious eavesdroppers, which poses a considerable challenge to the security of wireless communications. This paper investigates the security of aerial cognitive radio networks (CRNs). An airborne base station transmits confidential messages to secondary users utilizing the same spectrum as the primary network. An aerial base station transmits jamming signals to suppress the eavesdropper to enhance secrecy performance. The uncertainty of eavesdropping node locations is considered, and the average secrecy rate of the cognitive user is maximized by optimizing multiple users' scheduling, the UAVs' trajectory, and transmit power. To solve the non-convex optimization problem with mixed multiple integers variable problem, we propose an iterative algorithm based on block coordinate descent and successive convex approximation. Numerical results verify the effectiveness of our proposed algorithm and demonstrate that our scheme is beneficial to improving the secrecy performance of aerial CRNs.