Abstract:Random Forests are widely recognized for establishing efficacy in classification and regression tasks, standing out in various domains such as medical diagnosis, finance, and personalized recommendations. These domains, however, are inherently sensitive to privacy concerns, as personal and confidential data are involved. With increasing demand for the right to be forgotten, particularly under regulations such as GDPR and CCPA, the ability to perform machine unlearning has become crucial for Random Forests. However, insufficient attention was paid to this topic, and existing approaches face difficulties in being applied to real-world scenarios. Addressing this gap, we propose the DynFrs framework designed to enable efficient machine unlearning in Random Forests while preserving predictive accuracy. Dynfrs leverages subsampling method Occ(q) and a lazy tag strategy Lzy, and is still adaptable to any Random Forest variant. In essence, Occ(q) ensures that each sample in the training set occurs only in a proportion of trees so that the impact of deleting samples is limited, and Lzy delays the reconstruction of a tree node until necessary, thereby avoiding unnecessary modifications on tree structures. In experiments, applying Dynfrs on Extremely Randomized Trees yields substantial improvements, achieving orders of magnitude faster unlearning performance and better predictive accuracy than existing machine unlearning methods for Random Forests.
Abstract:Knowledge graph embedding (KGE) has caught significant interest for its effectiveness in knowledge graph completion (KGC), specifically link prediction (LP), with recent KGE models cracking the LP benchmarks. Despite the rapidly growing literature, insufficient attention has been paid to the cooperation between humans and AI on KG. However, humans' capability to analyze graphs conceptually may further improve the efficacy of KGE models with semantic information. To this effect, we carefully designed a human-AI team (HAIT) system dubbed KG-HAIT, which harnesses the human insights on KG by leveraging fully human-designed ad-hoc dynamic programming (DP) on KG to produce human insightful feature (HIF) vectors that capture the subgraph structural feature and semantic similarities. By integrating HIF vectors into the training of KGE models, notable improvements are observed across various benchmarks and metrics, accompanied by accelerated model convergence. Our results underscore the effectiveness of human-designed DP in the task of LP, emphasizing the pivotal role of collaboration between humans and AI on KG. We open avenues for further exploration and innovation through KG-HAIT, paving the way towards more effective and insightful KG analysis techniques.