Abstract:Glitch tokens in Large Language Models (LLMs) can trigger unpredictable behaviors, compromising model reliability and safety. Existing detection methods often rely on manual observation to infer the prior distribution of glitch tokens, which is inefficient and lacks adaptability across diverse model architectures. To address these limitations, we introduce GlitchMiner, a gradient-based discrete optimization framework designed for efficient glitch token detection in LLMs. GlitchMiner leverages an entropy-based loss function to quantify the uncertainty in model predictions and integrates first-order Taylor approximation with a local search strategy to effectively explore the token space. Our evaluation across various mainstream LLM architectures demonstrates that GlitchMiner surpasses existing methods in both detection precision and adaptability. In comparison to the previous state-of-the-art, GlitchMiner achieves an average improvement of 19.07% in precision@1000 for glitch token detection. By enabling efficient detection of glitch tokens, GlitchMiner provides a valuable tool for assessing and mitigating potential vulnerabilities in LLMs, contributing to their overall security.
Abstract:Multimodal Large Language Models (MLLMs) have made significant progress in bridging the gap between visual and language modalities. However, hallucinations in MLLMs, where the generated text does not align with image content, continue to be a major challenge. Existing methods for addressing hallucinations often rely on instruction-tuning, which requires retraining the model with specific data, which increases the cost of utilizing MLLMs further. In this paper, we introduce a novel training-free method, named Piculet, for enhancing the input representation of MLLMs. Piculet leverages multiple specialized models to extract descriptions of visual information from the input image and combine these descriptions with the original image and query as input to the MLLM. We evaluate our method both quantitively and qualitatively, and the results demonstrate that Piculet greatly decreases hallucinations of MLLMs. Our method can be easily extended to different MLLMs while being universal.
Abstract:The rapid growth of large language models(LLMs) has emerged as a prominent trend in the field of artificial intelligence. However, current state-of-the-art LLMs are predominantly based on English. They encounter limitations when directly applied to tasks in specific cultural domains, due to deficiencies in domain-specific knowledge and misunderstandings caused by differences in cultural values. To address this challenge, our paper proposes a rapid adaptation method for large models in specific cultural contexts, which leverages instruction-tuning based on specific cultural knowledge and safety values data. Taking Chinese as the specific cultural context and utilizing the LLaMA3-8B as the experimental English LLM, the evaluation results demonstrate that the adapted LLM significantly enhances its capabilities in domain-specific knowledge and adaptability to safety values, while maintaining its original expertise advantages.
Abstract:General large language models enhanced with supervised fine-tuning and reinforcement learning from human feedback are increasingly popular in academia and industry as they generalize foundation models to various practical tasks in a prompt manner. To assist users in selecting the best model in practical application scenarios, i.e., choosing the model that meets the application requirements while minimizing cost, we introduce A-Eval, an application-driven LLMs evaluation benchmark for general large language models. First, we categorize evaluation tasks into five main categories and 27 sub-categories from a practical application perspective. Next, we construct a dataset comprising 678 question-and-answer pairs through a process of collecting, annotating, and reviewing. Then, we design an objective and effective evaluation method and evaluate a series of LLMs of different scales on A-Eval. Finally, we reveal interesting laws regarding model scale and task difficulty level and propose a feasible method for selecting the best model. Through A-Eval, we provide clear empirical and engineer guidance for selecting the best model, reducing barriers to selecting and using LLMs and promoting their application and development. Our benchmark is publicly available at https://github.com/UnicomAI/DataSet/tree/main/TestData/GeneralAbility.
Abstract:With the profound development of large language models(LLMs), their safety concerns have garnered increasing attention. However, there is a scarcity of Chinese safety benchmarks for LLMs, and the existing safety taxonomies are inadequate, lacking comprehensive safety detection capabilities in authentic Chinese scenarios. In this work, we introduce CHiSafetyBench, a dedicated safety benchmark for evaluating LLMs' capabilities in identifying risky content and refusing answering risky questions in Chinese contexts. CHiSafetyBench incorporates a dataset that covers a hierarchical Chinese safety taxonomy consisting of 5 risk areas and 31 categories. This dataset comprises two types of tasks: multiple-choice questions and question-answering, evaluating LLMs from the perspectives of risk content identification and the ability to refuse answering risky questions respectively. Utilizing this benchmark, we validate the feasibility of automatic evaluation as a substitute for human evaluation and conduct comprehensive automatic safety assessments on mainstream Chinese LLMs. Our experiments reveal the varying performance of different models across various safety domains, indicating that all models possess considerable potential for improvement in Chinese safety capabilities. Our dataset is publicly available at https://github.com/UnicomAI/DataSet/tree/main/TestData/Safety.
Abstract:Image matching is still challenging in such scenes with large viewpoints or illumination changes or with low textures. In this paper, we propose a Transformer-based pseudo 3D image matching method. It upgrades the 2D features extracted from the source image to 3D features with the help of a reference image and matches to the 2D features extracted from the destination image by the coarse-to-fine 3D matching. Our key discovery is that by introducing the reference image, the source image's fine points are screened and furtherly their feature descriptors are enriched from 2D to 3D, which improves the match performance with the destination image. Experimental results on multiple datasets show that the proposed method achieves the state-of-the-art on the tasks of homography estimation, pose estimation and visual localization especially in challenging scenes.
Abstract:Anomaly detection without priors of the anomalies is challenging. In the field of unsupervised anomaly detection, traditional auto-encoder (AE) tends to fail based on the assumption that by training only on normal images, the model will not be able to reconstruct abnormal images correctly. On the contrary, we propose a novel patch-wise auto-encoder (Patch AE) framework, which aims at enhancing the reconstruction ability of AE to anomalies instead of weakening it. Each patch of image is reconstructed by corresponding spatially distributed feature vector of the learned feature representation, i.e., patch-wise reconstruction, which ensures anomaly-sensitivity of AE. Our method is simple and efficient. It advances the state-of-the-art performances on Mvtec AD benchmark, which proves the effectiveness of our model. It shows great potential in practical industrial application scenarios.
Abstract:In recent years, deep learning technology has been maturely applied in the field of object detection, and most algorithms tend to be supervised learning. However, a large amount of labeled data requires high costs of human resources, which brings about low efficiency and limitations. Semi-supervised object detection (SSOD) has been paid more and more attentions due to its high research value and practicability. It is designed to learn information by using small amounts of labeled data and large amounts of unlabeled data. In this paper, we present a comprehensive and up-to-date survey on the SSOD approaches from five aspects. We first briefly introduce several ways of data augmentation. Then, we dive the mainstream semi-supervised strategies into pseudo labels, consistent regularization, graph based and transfer learning based methods, and introduce some methods in challenging settings. We further present widely-used loss functions, and then we outline the common benchmark datasets and compare the accuracy among different representative approaches. Finally, we conclude this paper and present some promising research directions for the future. Our survey aims to provide researchers and practitioners new to the field as well as more advanced readers with a solid understanding of the main approaches developed over the past few years.
Abstract:Person counting is considered as a fundamental task in video surveillance. However, the scenario diversity in practical applications makes it difficult to exploit a single person counting model for general use. Consequently, engineers must preview the video stream and manually specify an appropriate person counting model based on the scenario of camera shot, which is time-consuming, especially for large-scale deployments. In this paper, we propose a person counting paradigm that utilizes a scenario classifier to automatically select a suitable person counting model for each captured frame. First, the input image is passed through the scenario classifier to obtain a scenario label, which is then used to allocate the frame to one of five fine-tuned models for person counting. Additionally, we present five augmentation datasets collected from different scenarios, including side-view, long-shot, top-view, customized and crowd, which are also integrated to form a scenario classification dataset containing 26323 samples. In our comparative experiments, the proposed paradigm achieves better balance than any single model on the integrated dataset, thus its generalization in various scenarios has been proved.
Abstract:In practical applications especially with safety requirement, some hand-held actions need to be monitored closely, including smoking cigarettes, dialing, eating, etc. Taking smoking cigarettes as example, existing smoke detection algorithms usually detect the cigarette or cigarette with hand as the target object only, which leads to low accuracy. In this paper, we propose an application-driven AI paradigm for hand-held action detection based on hierarchical object detection. It is a coarse-to-fine hierarchical detection framework composed of two modules. The first one is a coarse detection module with the human pose consisting of the whole hand, cigarette and head as target object. The followed second one is a fine detection module with the fingers holding cigarette, mouth area and the whole cigarette as target. Some experiments are done with the dataset collected from real-world scenarios, and the results show that the proposed framework achieve higher detection rate with good adaptation and robustness in complex environments.