Abstract:To date, 2:4 sparsity has stood as the only sparse pattern that can be accelerated using sparse tensor cores on GPUs. In practice, 2:4 sparsity often possesses low actual speedups ($\leq 1.3$) and requires fixed sparse ratios, meaning that other ratios, such as 4:8, 8:16, or those exceeding 50% sparsity, do not incur any speedups on GPUs. Recent studies suggest that V:N:M sparsity is promising in addressing these limitations of 2:4 sparsity. However, regarding accuracy, the effects of V:N:M sparsity on broader Transformer models, such as vision Transformers and large language models (LLMs), are largely unexamined. Moreover, Some specific issues related to V:N:M sparsity, such as how to select appropriate V and M values, remain unresolved. In this study, we thoroughly investigate the application of V:N:M sparsity in vision models and LLMs across multiple tasks, from pertaining to downstream tasks. We propose three key approaches to enhance the applicability and accuracy of V:N:M-sparse Transformers, including heuristic V and M selection, V:N:M-specific channel permutation, and three-staged LoRA training techniques. Experimental results show that, with our methods, the DeiT-small achieves lossless accuracy at 64:2:5 sparsity, while the DeiT-base maintains accuracy even at 64:2:8 sparsity. In addition, the fine-tuned LLama2-7B at 64:2:5 sparsity performs comparably or better than training-free 2:4 sparse alternatives on downstream tasks. More importantly, V:N:M-sparse Transformers offer a wider range of speedup-accuracy trade-offs compared to 2:4 sparsity. Overall, our exploration largely facilitates the V:N:M sparsity to act as a truly effective acceleration solution for Transformers in cost-sensitive inference scenarios.
Abstract:When tracking maneuvering targets, model-driven approaches encounter difficulties in comprehensively delineating complex real-world scenarios and are prone to model mismatch when the targets maneuver. Meanwhile, contemporary data-driven methods have overlooked measurements' confidence, markedly escalating the challenge of fitting a mapping from measurement sequences to target state sequences. To address these issues, this paper presents a deep maneuvering target tracking methodology based on target state space projection. The proposed methodology initially establishes a projection from the target measurement sequence to the target state space by formulating the probability density function of measurement error and samples the distribution information of measurement noise within the target state space as a measurement representation. Under this representation, the sequential regression task of target state estimation can be transmuted into a task of detecting the target location in the state space. Subsequently, a deep detection network is devised to accomplish target location detection in the target state space. Finally, a loss function is designed to facilitate the network's training for attaining the desired network performance. Simulation experiments suggest that the proposed method can maintain satisfactory tracking performance even when the target maneuvers, and can rapidly converge and achieve higher estimation accuracy compared with existing methods after the target maneuvers.
Abstract:Multi-frame detection algorithms can effectively utilize the correlation between consecutive echoes to improve the detection performance of weak targets. Existing efficient multi-frame detection algorithms are typically based on three sequential steps: plot extraction via a relative low primary threshold, track search and track detection. However, these three-stage processing algorithms may result in a notable loss of detection performance and do not fully leverage the available echo information across frames. As to applying graph neural networks in multi-frame detection, the algorithms are primarily based on node classification tasks, which cannot directly output target tracks. In this paper, we reformulate the multi-frame detection problem as a link prediction task in graphs. First, we perform a rough association of multi-frame observations that exceed the low threshold to construct observation association graphs. Subsequently, a multi-feature link prediction network is designed based on graph neural networks, which integrates multi-dimensional information, including echo structure, Doppler information, and spatio-temporal coupling of plots. By leveraging the principle of link prediction, we unifies the processes of track search and track detection into one step to reduce performance loss and directly output target tracks. Experimental results show that, compared with traditional single-frame and multi-frame detection algorithms, the proposed algorithm improves the detection performance of weak targets while suppressing false alarms. Additionally, interpretable analysis indicates that the designed network effectively integrates the utilized features, allowing for accurate associations between targets and false alarms.
Abstract:The increasing adoption of Deep Neural Network (DNN)-based Digital Pre-distortion (DPD) in modern communication systems necessitates efficient hardware implementations. This paper presents DPD-NeuralEngine, an ultra-fast, tiny-area, and power-efficient DPD accelerator based on a Gated Recurrent Unit (GRU) neural network (NN). Leveraging a co-designed software and hardware approach, our 22 nm CMOS implementation operates at 2 GHz, capable of processing I/Q signals up to 250 MSps. Experimental results demonstrate a throughput of 256.5 GOPS and power efficiency of 1.32 TOPS/W with DPD linearization performance measured in Adjacent Channel Power Ratio (ACPR) of -45.3 dBc and Error Vector Magnitude (EVM) of -39.8 dB. To our knowledge, this work represents the first AI-based DPD application-specific integrated circuit (ASIC) accelerator, achieving a power-area efficiency (PAE) of 6.6 TOPS/W/mm$^2$.
Abstract:This paper presents CleanUMamba, a time-domain neural network architecture designed for real-time causal audio denoising directly applied to raw waveforms. CleanUMamba leverages a U-Net encoder-decoder structure, incorporating the Mamba state-space model in the bottleneck layer. By replacing conventional self-attention and LSTM mechanisms with Mamba, our architecture offers superior denoising performance while maintaining a constant memory footprint, enabling streaming operation. To enhance efficiency, we applied structured channel pruning, achieving an 8X reduction in model size without compromising audio quality. Our model demonstrates strong results in the Interspeech 2020 Deep Noise Suppression challenge. Specifically, CleanUMamba achieves a PESQ score of 2.42 and STOI of 95.1% with only 442K parameters and 468M MACs, matching or outperforming larger models in real-time performance. Code will be available at: https://github.com/lab-emi/CleanUMamba
Abstract:Epileptic seizures cause abnormal brain activity, and their unpredictability can lead to accidents, underscoring the need for long-term seizure prediction. Although seizures can be predicted by analyzing electroencephalogram (EEG) signals, existing methods often require too many electrode channels or larger models, limiting mobile usability. This paper introduces a SlimSeiz framework that utilizes adaptive channel selection with a lightweight neural network model. SlimSeiz operates in two states: the first stage selects the optimal channel set for seizure prediction using machine learning algorithms, and the second stage employs a lightweight neural network based on convolution and Mamba for prediction. On the Children's Hospital Boston-MIT (CHB-MIT) EEG dataset, SlimSeiz can reduce channels from 22 to 8 while achieving a satisfactory result of 94.8% accuracy, 95.5% sensitivity, and 94.0% specificity with only 21.2K model parameters, matching or outperforming larger models' performance. We also validate SlimSeiz on a new EEG dataset, SRH-LEI, collected from Shanghai Renji Hospital, demonstrating its effectiveness across different patients. The code and SRH-LEI dataset are available at https://github.com/guoruilu/SlimSeiz.
Abstract:Fully quantized training (FQT) accelerates the training of deep neural networks by quantizing the activations, weights, and gradients into lower precision. To explore the ultimate limit of FQT (the lowest achievable precision), we make a first attempt to 1-bit FQT. We provide a theoretical analysis of FQT based on Adam and SGD, revealing that the gradient variance influences the convergence of FQT. Building on these theoretical results, we introduce an Activation Gradient Pruning (AGP) strategy. The strategy leverages the heterogeneity of gradients by pruning less informative gradients and enhancing the numerical precision of remaining gradients to mitigate gradient variance. Additionally, we propose Sample Channel joint Quantization (SCQ), which utilizes different quantization strategies in the computation of weight gradients and activation gradients to ensure that the method is friendly to low-bitwidth hardware. Finally, we present a framework to deploy our algorithm. For fine-tuning VGGNet-16 and ResNet-18 on multiple datasets, our algorithm achieves an average accuracy improvement of approximately 6%, compared to per-sample quantization. Moreover, our training speedup can reach a maximum of 5.13x compared to full precision training.
Abstract:Nonlinear model predictive control (NMPC) has proven to be an effective control method, but it is expensive to compute. This work demonstrates the use of hardware FPGA neural network controllers trained to imitate NMPC with supervised learning. We use these Neural Controllers (NCs) implemented on inexpensive embedded FPGA hardware for high frequency control on physical cartpole and F1TENTH race car. Our results show that the NCs match the control performance of the NMPCs in simulation and outperform it in reality, due to the faster control rate that is afforded by the quick FPGA NC inference. We demonstrate kHz control rates for a physical cartpole and offloading control to the FPGA hardware on the F1TENTH car. Code and hardware implementation for this paper are available at https:// github.com/SensorsINI/Neural-Control-Tools.
Abstract:This paper introduces, to the best of the authors' knowledge, the first fine-grained temporal sparsity-aware keyword spotting (KWS) IC leveraging temporal similarities between neighboring feature vectors extracted from input frames and network hidden states, eliminating unnecessary operations and memory accesses. This KWS IC, featuring a bio-inspired delta-gated recurrent neural network ({\Delta}RNN) classifier, achieves an 11-class Google Speech Command Dataset (GSCD) KWS accuracy of 90.5% and energy consumption of 36nJ/decision. At 87% temporal sparsity, computing latency and energy per inference are reduced by 2.4$\times$/3.4$\times$, respectively. The 65nm design occupies 0.78mm$^2$ and features two additional blocks, a compact 0.084mm$^2$ digital infinite-impulse-response (IIR)-based band-pass filter (BPF) audio feature extractor (FEx) and a 24kB 0.6V near-Vth weight SRAM with 6.6$\times$ lower read power compared to the standard SRAM.
Abstract:Digital Pre-Distortion (DPD) enhances signal quality in wideband RF power amplifiers (PAs). As signal bandwidths expand in modern radio systems, DPD's energy consumption increasingly impacts overall system efficiency. Deep Neural Networks (DNNs) offer promising advancements in DPD, yet their high complexity hinders their practical deployment. This paper introduces open-source mixed-precision (MP) neural networks that employ quantized low-precision fixed-point parameters for energy-efficient DPD. This approach reduces computational complexity and memory footprint, thereby lowering power consumption without compromising linearization efficacy. Applied to a 160MHz-BW 1024-QAM OFDM signal from a digital RF PA, MP-DPD gives no performance loss against 32-bit floating-point precision DPDs, while achieving -43.75 (L)/-45.27 (R) dBc in Adjacent Channel Power Ratio (ACPR) and -38.72 dB in Error Vector Magnitude (EVM). A 16-bit fixed-point-precision MP-DPD enables a 2.8X reduction in estimated inference power. The PyTorch learning and testing code is publicly available at \url{https://github.com/lab-emi/OpenDPD}.