Abstract:We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token. To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2. Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance. We pre-train DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source models and achieves performance comparable to leading closed-source models. Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In addition, its training process is remarkably stable. Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks. The model checkpoints are available at https://github.com/deepseek-ai/DeepSeek-V3.
Abstract:The increasing adoption of Deep Neural Network (DNN)-based Digital Pre-distortion (DPD) in modern communication systems necessitates efficient hardware implementations. This paper presents DPD-NeuralEngine, an ultra-fast, tiny-area, and power-efficient DPD accelerator based on a Gated Recurrent Unit (GRU) neural network (NN). Leveraging a co-designed software and hardware approach, our 22 nm CMOS implementation operates at 2 GHz, capable of processing I/Q signals up to 250 MSps. Experimental results demonstrate a throughput of 256.5 GOPS and power efficiency of 1.32 TOPS/W with DPD linearization performance measured in Adjacent Channel Power Ratio (ACPR) of -45.3 dBc and Error Vector Magnitude (EVM) of -39.8 dB. To our knowledge, this work represents the first AI-based DPD application-specific integrated circuit (ASIC) accelerator, achieving a power-area efficiency (PAE) of 6.6 TOPS/W/mm$^2$.
Abstract:This paper presents CleanUMamba, a time-domain neural network architecture designed for real-time causal audio denoising directly applied to raw waveforms. CleanUMamba leverages a U-Net encoder-decoder structure, incorporating the Mamba state-space model in the bottleneck layer. By replacing conventional self-attention and LSTM mechanisms with Mamba, our architecture offers superior denoising performance while maintaining a constant memory footprint, enabling streaming operation. To enhance efficiency, we applied structured channel pruning, achieving an 8X reduction in model size without compromising audio quality. Our model demonstrates strong results in the Interspeech 2020 Deep Noise Suppression challenge. Specifically, CleanUMamba achieves a PESQ score of 2.42 and STOI of 95.1% with only 442K parameters and 468M MACs, matching or outperforming larger models in real-time performance. Code will be available at: https://github.com/lab-emi/CleanUMamba
Abstract:Epileptic seizures cause abnormal brain activity, and their unpredictability can lead to accidents, underscoring the need for long-term seizure prediction. Although seizures can be predicted by analyzing electroencephalogram (EEG) signals, existing methods often require too many electrode channels or larger models, limiting mobile usability. This paper introduces a SlimSeiz framework that utilizes adaptive channel selection with a lightweight neural network model. SlimSeiz operates in two states: the first stage selects the optimal channel set for seizure prediction using machine learning algorithms, and the second stage employs a lightweight neural network based on convolution and Mamba for prediction. On the Children's Hospital Boston-MIT (CHB-MIT) EEG dataset, SlimSeiz can reduce channels from 22 to 8 while achieving a satisfactory result of 94.8% accuracy, 95.5% sensitivity, and 94.0% specificity with only 21.2K model parameters, matching or outperforming larger models' performance. We also validate SlimSeiz on a new EEG dataset, SRH-LEI, collected from Shanghai Renji Hospital, demonstrating its effectiveness across different patients. The code and SRH-LEI dataset are available at https://github.com/guoruilu/SlimSeiz.
Abstract:We present DeepSeek-Coder-V2, an open-source Mixture-of-Experts (MoE) code language model that achieves performance comparable to GPT4-Turbo in code-specific tasks. Specifically, DeepSeek-Coder-V2 is further pre-trained from an intermediate checkpoint of DeepSeek-V2 with additional 6 trillion tokens. Through this continued pre-training, DeepSeek-Coder-V2 substantially enhances the coding and mathematical reasoning capabilities of DeepSeek-V2, while maintaining comparable performance in general language tasks. Compared to DeepSeek-Coder-33B, DeepSeek-Coder-V2 demonstrates significant advancements in various aspects of code-related tasks, as well as reasoning and general capabilities. Additionally, DeepSeek-Coder-V2 expands its support for programming languages from 86 to 338, while extending the context length from 16K to 128K. In standard benchmark evaluations, DeepSeek-Coder-V2 achieves superior performance compared to closed-source models such as GPT4-Turbo, Claude 3 Opus, and Gemini 1.5 Pro in coding and math benchmarks.
Abstract:This paper introduces, to the best of the authors' knowledge, the first fine-grained temporal sparsity-aware keyword spotting (KWS) IC leveraging temporal similarities between neighboring feature vectors extracted from input frames and network hidden states, eliminating unnecessary operations and memory accesses. This KWS IC, featuring a bio-inspired delta-gated recurrent neural network ({\Delta}RNN) classifier, achieves an 11-class Google Speech Command Dataset (GSCD) KWS accuracy of 90.5% and energy consumption of 36nJ/decision. At 87% temporal sparsity, computing latency and energy per inference are reduced by 2.4$\times$/3.4$\times$, respectively. The 65nm design occupies 0.78mm$^2$ and features two additional blocks, a compact 0.084mm$^2$ digital infinite-impulse-response (IIR)-based band-pass filter (BPF) audio feature extractor (FEx) and a 24kB 0.6V near-Vth weight SRAM with 6.6$\times$ lower read power compared to the standard SRAM.
Abstract:Digital Pre-Distortion (DPD) enhances signal quality in wideband RF power amplifiers (PAs). As signal bandwidths expand in modern radio systems, DPD's energy consumption increasingly impacts overall system efficiency. Deep Neural Networks (DNNs) offer promising advancements in DPD, yet their high complexity hinders their practical deployment. This paper introduces open-source mixed-precision (MP) neural networks that employ quantized low-precision fixed-point parameters for energy-efficient DPD. This approach reduces computational complexity and memory footprint, thereby lowering power consumption without compromising linearization efficacy. Applied to a 160MHz-BW 1024-QAM OFDM signal from a digital RF PA, MP-DPD gives no performance loss against 32-bit floating-point precision DPDs, while achieving -43.75 (L)/-45.27 (R) dBc in Adjacent Channel Power Ratio (ACPR) and -38.72 dB in Error Vector Magnitude (EVM). A 16-bit fixed-point-precision MP-DPD enables a 2.8X reduction in estimated inference power. The PyTorch learning and testing code is publicly available at \url{https://github.com/lab-emi/OpenDPD}.
Abstract:This survey reviews the AIS 2024 Event-Based Eye Tracking (EET) Challenge. The task of the challenge focuses on processing eye movement recorded with event cameras and predicting the pupil center of the eye. The challenge emphasizes efficient eye tracking with event cameras to achieve good task accuracy and efficiency trade-off. During the challenge period, 38 participants registered for the Kaggle competition, and 8 teams submitted a challenge factsheet. The novel and diverse methods from the submitted factsheets are reviewed and analyzed in this survey to advance future event-based eye tracking research.
Abstract:In today's fast-paced world, the growing demand to quickly generate comprehensive and accurate Wikipedia documents for emerging events is both crucial and challenging. However, previous efforts in Wikipedia generation have often fallen short of meeting real-world requirements. Some approaches focus solely on generating segments of a complete Wikipedia document, while others overlook the importance of faithfulness in generation or fail to consider the influence of the pre-training corpus. In this paper, we simulate a real-world scenario where structured full-length Wikipedia documents are generated for emergent events using input retrieved from web sources. To ensure that Large Language Models (LLMs) are not trained on corpora related to recently occurred events, we select events that have taken place recently and introduce a new benchmark Wiki-GenBen, which consists of 309 events paired with their corresponding retrieved web pages for generating evidence. Additionally, we design a comprehensive set of systematic evaluation metrics and baseline methods, to evaluate the capability of LLMs in generating factual full-length Wikipedia documents. The data and code are open-sourced at WikiGenBench.
Abstract:The ever-growing ecosystem of LLMs has posed a challenge in selecting the most appropriate pre-trained model to fine-tune amidst a sea of options. Given constrained resources, fine-tuning all models and making selections afterward is unrealistic. In this work, we formulate this resource-constrained selection task into predicting fine-tuning performance and illustrate its natural connection with scaling laws. Unlike pre-training, We find that the fine-tuning scaling curve includes not just the well-known "power phase" but also the previously unobserved "pre-power phase". We also explain why existing scaling laws fail to capture this phase transition phenomenon both theoretically and empirically. To address this, we introduce the concept of "pre-learned data size" into our rectified scaling law, which overcomes theoretical limitations and fits experimental results much better. By leveraging our law, we propose a novel LLM selection algorithm that selects the near-optimal model with hundreds of times less resource consumption, while other methods may provide negatively correlated selection.