Abstract:The increasing adoption of Deep Neural Network (DNN)-based Digital Pre-distortion (DPD) in modern communication systems necessitates efficient hardware implementations. This paper presents DPD-NeuralEngine, an ultra-fast, tiny-area, and power-efficient DPD accelerator based on a Gated Recurrent Unit (GRU) neural network (NN). Leveraging a co-designed software and hardware approach, our 22 nm CMOS implementation operates at 2 GHz, capable of processing I/Q signals up to 250 MSps. Experimental results demonstrate a throughput of 256.5 GOPS and power efficiency of 1.32 TOPS/W with DPD linearization performance measured in Adjacent Channel Power Ratio (ACPR) of -45.3 dBc and Error Vector Magnitude (EVM) of -39.8 dB. To our knowledge, this work represents the first AI-based DPD application-specific integrated circuit (ASIC) accelerator, achieving a power-area efficiency (PAE) of 6.6 TOPS/W/mm$^2$.
Abstract:Digital Pre-Distortion (DPD) enhances signal quality in wideband RF power amplifiers (PAs). As signal bandwidths expand in modern radio systems, DPD's energy consumption increasingly impacts overall system efficiency. Deep Neural Networks (DNNs) offer promising advancements in DPD, yet their high complexity hinders their practical deployment. This paper introduces open-source mixed-precision (MP) neural networks that employ quantized low-precision fixed-point parameters for energy-efficient DPD. This approach reduces computational complexity and memory footprint, thereby lowering power consumption without compromising linearization efficacy. Applied to a 160MHz-BW 1024-QAM OFDM signal from a digital RF PA, MP-DPD gives no performance loss against 32-bit floating-point precision DPDs, while achieving -43.75 (L)/-45.27 (R) dBc in Adjacent Channel Power Ratio (ACPR) and -38.72 dB in Error Vector Magnitude (EVM). A 16-bit fixed-point-precision MP-DPD enables a 2.8X reduction in estimated inference power. The PyTorch learning and testing code is publicly available at \url{https://github.com/lab-emi/OpenDPD}.
Abstract:With the rise in communication capacity, deep neural networks (DNN) for digital pre-distortion (DPD) to correct non-linearity in wideband power amplifiers (PAs) have become prominent. Yet, there is a void in open-source and measurement-setup-independent platforms for fast DPD exploration and objective DPD model comparison. This paper presents an open-source framework, OpenDPD, crafted in PyTorch, with an associated dataset for PA modeling and DPD learning. We introduce a Dense Gated Recurrent Unit (DGRU)-DPD, trained via a novel end-to-end learning architecture, outperforming previous DPD models on a digital PA (DPA) in the new digital transmitter (DTX) architecture with unconventional transfer characteristics compared to analog PAs. Measurements show our DGRU-DPD achieves an ACPR of -44.69/-44.47 dBc and an EVM of -35.22 dB for 200 MHz OFDM signals. OpenDPD code, datasets, and documentation are publicly available at https://github.com/lab-emi/OpenDPD.