https://github.com/lab-emi/AIRHAR.
Radar-based HAR has emerged as a promising alternative to conventional monitoring approaches, such as wearable devices and camera-based systems, due to its unique privacy preservation and robustness advantages. However, existing solutions based on convolutional and recurrent neural networks, although effective, are computationally demanding during deployment. This limits their applicability in scenarios with constrained resources or those requiring multiple sensors. Advanced architectures, such as ViT and SSM architectures, offer improved modeling capabilities and have made efforts toward lightweight designs. However, their computational complexity remains relatively high. To leverage the strengths of transformer architectures while simultaneously enhancing accuracy and reducing computational complexity, this paper introduces RadMamba, a parameter-efficient, radar micro-Doppler-oriented Mamba SSM specifically tailored for radar-based HAR. Across three diverse datasets, RadMamba matches the top-performing previous model's 99.8% classification accuracy on Dataset DIAT with only 1/400 of its parameters and equals the leading models' 92.0% accuracy on Dataset CI4R with merely 1/10 of their parameters. In scenarios with continuous sequences of actions evaluated on Dataset UoG2020, RadMamba surpasses other models with significantly higher parameter counts by at least 3%, achieving this with only 6.7k parameters. Our code is available at: