Abstract:THz ISAC aims to integrate novel functionalities, such as positioning and environmental sensing, into communication systems. Accurate channel modeling is crucial for the design and performance evaluation of future ISAC systems. In this paper, a THz measurement campaign for monostatic sensing is presented. VNA-based channel measurements are conducted in a laboratory scenario, where the transmitter and receiver are positioned together to mimic monostatic sensing. The centering frequency and measured bandwidth for these measurements are 300 GHz and 20 GHz, respectively. A DSS scheme is employed to capture spatial sensing channel profiles. Measurements are conducted across 28 transceiver locations arranged along an 'L'-shaped route. Then, an element-wise SAGE algorithm is used to estimate the MPC parameters, i.e., amplitude and delay. Specular and diffuse reflections are analyzed based on geometric principles and the estimated MPC parameters, where the effects from the radiation pattern are observed. A geometry-based MPC trajectory tracking algorithm is then proposed to classify the MPCs and de-embed the effects of the radiation pattern. Following this algorithm, a hybrid channel model is proposed based on the de-embedded MPC parameters. In this hybrid channel model for monostatic sensing, the MPCs are categorized into target-related and environment-related components. The target-related components are utilized for target detection and identification, while the environment-related ones focus on geometrical scenario reconstruction. A demonstration of geometrical environment reconstruction, along with an analysis of reflection loss for target identification, is subsequently presented. This work offers valuable insights into THz monostatic sensing channel modeling and the design of future THz ISAC systems.
Abstract:Reinforcement Learning from Human Feedback aligns the outputs of Large Language Models with human values and preferences. Central to this process is the reward model (RM), which translates human feedback into training signals for optimising LLM behaviour. However, RMs can develop biases by exploiting spurious correlations in their training data, such as favouring outputs based on length or style rather than true quality. These biases can lead to incorrect output rankings, sub-optimal model evaluations, and the amplification of undesirable behaviours in LLMs alignment. This paper addresses the challenge of correcting such biases without additional data and training, introducing the concept of Post-hoc Reward Calibration. We first propose an intuitive approach to estimate the bias term and, thus, remove it to approximate the underlying true reward. We then extend the approach to a more general and robust form with the Locally Weighted Regression. Focusing on the prevalent length bias, we validate our proposed approaches across three experimental settings, demonstrating consistent improvements: (1) a 3.11 average performance gain across 33 reward models on the RewardBench dataset; (2) enhanced alignment of RM rankings with GPT-4 evaluations and human preferences based on the AlpacaEval benchmark; and (3) improved Length-Controlled win rate of the RLHF process in multiple LLM--RM combinations. Our method is computationally efficient and generalisable to other types of bias and RMs, offering a scalable and robust solution for mitigating biases in LLM alignment. Our code and results are available at https://github.com/ZeroYuHuang/Reward-Calibration.
Abstract:The scaling of large language models (LLMs) has revolutionized their capabilities in various tasks, yet this growth must be matched with efficient computational strategies. The Mixture-of-Experts (MoE) architecture stands out for its ability to scale model size without significantly increasing training costs. Despite their advantages, current MoE models often display parameter inefficiency. For instance, a pre-trained MoE-based LLM with 52 billion parameters might perform comparably to a standard model with 6.7 billion parameters. Being a crucial part of MoE, current routers in different layers independently assign tokens without leveraging historical routing information, potentially leading to suboptimal token-expert combinations and the parameter inefficiency problem. To alleviate this issue, we introduce the Layerwise Recurrent Router for Mixture-of-Experts (RMoE). RMoE leverages a Gated Recurrent Unit (GRU) to establish dependencies between routing decisions across consecutive layers. Such layerwise recurrence can be efficiently parallelly computed for input tokens and introduces negotiable costs. Our extensive empirical evaluations demonstrate that RMoE-based language models consistently outperform a spectrum of baseline models. Furthermore, RMoE integrates a novel computation stage orthogonal to existing methods, allowing seamless compatibility with other MoE architectures. Our analyses attribute RMoE's gains to its effective cross-layer information sharing, which also improves expert selection and diversity. Our code is at https://github.com/qiuzh20/RMoE
Abstract:Interdisciplinary studies often require researchers to explore literature in diverse branches of knowledge. Yet, navigating through the highly scattered knowledge from unfamiliar disciplines poses a significant challenge. In this paper, we introduce DiscipLink, a novel interactive system that facilitates collaboration between researchers and large language models (LLMs) in interdisciplinary information seeking (IIS). Based on users' topics of interest, DiscipLink initiates exploratory questions from the perspectives of possible relevant fields of study, and users can further tailor these questions. DiscipLink then supports users in searching and screening papers under selected questions by automatically expanding queries with disciplinary-specific terminologies, extracting themes from retrieved papers, and highlighting the connections between papers and questions. Our evaluation, comprising a within-subject comparative experiment and an open-ended exploratory study, reveals that DiscipLink can effectively support researchers in breaking down disciplinary boundaries and integrating scattered knowledge in diverse fields. The findings underscore the potential of LLM-powered tools in fostering information-seeking practices and bolstering interdisciplinary research.
Abstract:In this paper, we introduce a novel method called FRI-Net for 2D floorplan reconstruction from 3D point cloud. Existing methods typically rely on corner regression or box regression, which lack consideration for the global shapes of rooms. To address these issues, we propose a novel approach using a room-wise implicit representation with structural regularization to characterize the shapes of rooms in floorplans. By incorporating geometric priors of room layouts in floorplans into our training strategy, the generated room polygons are more geometrically regular. We have conducted experiments on two challenging datasets, Structured3D and SceneCAD. Our method demonstrates improved performance compared to state-of-the-art methods, validating the effectiveness of our proposed representation for floorplan reconstruction.
Abstract:Large Language Models (LLMs) excel in fluency but risk producing inaccurate content, called "hallucinations." This paper outlines a standardized process for categorizing fine-grained hallucination types and proposes an innovative framework--the Progressive Fine-grained Model Editor (PFME)--specifically designed to detect and correct fine-grained hallucinations in LLMs. PFME consists of two collaborative modules: the Real-time Fact Retrieval Module and the Fine-grained Hallucination Detection and Editing Module. The former identifies key entities in the document and retrieves the latest factual evidence from credible sources. The latter further segments the document into sentence-level text and, based on relevant evidence and previously edited context, identifies, locates, and edits each sentence's hallucination type. Experimental results on FavaBench and FActScore demonstrate that PFME outperforms existing methods in fine-grained hallucination detection tasks. Particularly, when using the Llama3-8B-Instruct model, PFME's performance in fine-grained hallucination detection with external knowledge assistance improves by 8.7 percentage points (pp) compared to ChatGPT. In editing tasks, PFME further enhances the FActScore of FActScore-Alpaca13B and FActScore-ChatGPT datasets, increasing by 16.2pp and 4.6pp, respectively.
Abstract:Mixture-of-experts (MoE) is gaining increasing attention due to its unique properties and remarkable performance, especially for language tasks. By sparsely activating a subset of parameters for each token, MoE architecture could increase the model size without sacrificing computational efficiency, achieving a better trade-off between performance and training costs. However, the underlying mechanism of MoE still lacks further exploration, and its modularization degree remains questionable. In this paper, we make an initial attempt to understand the inner workings of MoE-based large language models. Concretely, we comprehensively study the parametric and behavioral features of three recent MoE-based models and reveal some intriguing observations, including (1) Neurons act like fine-grained experts. (2) The router of MoE usually selects experts with larger output norms. (3) The expert diversity increases as the layer increases, while the last layer is an outlier. Based on the observations, we also provide suggestions for a broad spectrum of MoE practitioners, such as router design and expert allocation. We hope this work could shed light on future research on the MoE framework and other modular architectures. Code is available at https://github.com/kamanphoebe/Look-into-MoEs.
Abstract:Language models (LMs) exhibit impressive performance and generalization capabilities. However, LMs struggle with the persistent challenge of catastrophic forgetting, which undermines their long-term sustainability in continual learning (CL). Existing approaches usually address the issue by incorporating old task data or task-wise inductive bias into LMs. However, old data and accurate task information are often unavailable or costly to collect, hindering the availability of current CL approaches for LMs. To address this limitation, we introduce $\textbf{MIGU}$ ($\textbf{M}$agn$\textbf{I}$tude-based $\textbf{G}$radient $\textbf{U}$pdating for continual learning), a rehearsal-free and task-label-free method that only updates the model parameters with large magnitudes of output in LMs' linear layers. MIGU is based on our observation that the L1-normalized magnitude distribution of the output in LMs' linear layers is different when the LM models deal with different task data. By imposing this simple constraint on the gradient update process, we can leverage the inherent behaviors of LMs, thereby unlocking their innate CL abilities. Our experiments demonstrate that MIGU is universally applicable to all three LM architectures (T5, RoBERTa, and Llama2), delivering state-of-the-art or on-par performance across continual finetuning and continual pre-training settings on four CL benchmarks. For example, MIGU brings a 15.2% average accuracy improvement over conventional parameter-efficient finetuning baselines in a 15-task CL benchmark. MIGU can also seamlessly integrate with all three existing CL types to further enhance performance. Code is available at \href{https://github.com/wenyudu/MIGU}{this https URL}.
Abstract:LLMs are computationally expensive to pre-train due to their large scale. Model growth emerges as a promising approach by leveraging smaller models to accelerate the training of larger ones. However, the viability of these model growth methods in efficient LLM pre-training remains underexplored. This work identifies three critical $\underline{\textit{O}}$bstacles: ($\textit{O}$1) lack of comprehensive evaluation, ($\textit{O}$2) untested viability for scaling, and ($\textit{O}$3) lack of empirical guidelines. To tackle $\textit{O}$1, we summarize existing approaches into four atomic growth operators and systematically evaluate them in a standardized LLM pre-training setting. Our findings reveal that a depthwise stacking operator, called $G_{\text{stack}}$, exhibits remarkable acceleration in training, leading to decreased loss and improved overall performance on eight standard NLP benchmarks compared to strong baselines. Motivated by these promising results, we conduct extensive experiments to delve deeper into $G_{\text{stack}}$ to address $\textit{O}$2 and $\textit{O}$3. For $\textit{O}$2 (untested scalability), our study shows that $G_{\text{stack}}$ is scalable and consistently performs well, with experiments up to 7B LLMs after growth and pre-training LLMs with 750B tokens. For example, compared to a conventionally trained 7B model using 300B tokens, our $G_{\text{stack}}$ model converges to the same loss with 194B tokens, resulting in a 54.6\% speedup. We further address $\textit{O}$3 (lack of empirical guidelines) by formalizing guidelines to determine growth timing and growth factor for $G_{\text{stack}}$, making it practical in general LLM pre-training. We also provide in-depth discussions and comprehensive ablation studies of $G_{\text{stack}}$. Our code and pre-trained model are available at $\href{https://llm-stacking.github.io/}{https://llm-stacking.github.io/}$.
Abstract:In this paper, we introduce a new method for the task of interaction transfer. Given an example interaction between a source object and an agent, our method can automatically infer both surface and spatial relationships for the agent and target objects within the same category, yielding more accurate and valid transfers. Specifically, our method characterizes the example interaction using a combined spatial and surface representation. We correspond the agent points and object points related to the representation to the target object space using a learned spatial and surface correspondence field, which represents objects as deformed and rotated signed distance fields. With the corresponded points, an optimization is performed under the constraints of our spatial and surface interaction representation and additional regularization. Experiments conducted on human-chair and hand-mug interaction transfer tasks show that our approach can handle larger geometry and topology variations between source and target shapes, significantly outperforming state-of-the-art methods.