Abstract:Currently, large language models (LLMs) have made significant progress in the field of psychological counseling. However, existing mental health LLMs overlook a critical issue where they do not consider the fact that different psychological counselors exhibit different personal styles, including linguistic style and therapy techniques, etc. As a result, these LLMs fail to satisfy the individual needs of clients who seek different counseling styles. To help bridge this gap, we propose PsyDT, a novel framework using LLMs to construct the Digital Twin of Psychological counselor with personalized counseling style. Compared to the time-consuming and costly approach of collecting a large number of real-world counseling cases to create a specific counselor's digital twin, our framework offers a faster and more cost-effective solution. To construct PsyDT, we utilize dynamic one-shot learning by using GPT-4 to capture counselor's unique counseling style, mainly focusing on linguistic style and therapy techniques. Subsequently, using existing single-turn long-text dialogues with client's questions, GPT-4 is guided to synthesize multi-turn dialogues of specific counselor. Finally, we fine-tune the LLMs on the synthetic dataset, PsyDTCorpus, to achieve the digital twin of psychological counselor with personalized counseling style. Experimental results indicate that our proposed PsyDT framework can synthesize multi-turn dialogues that closely resemble real-world counseling cases and demonstrate better performance compared to other baselines, thereby show that our framework can effectively construct the digital twin of psychological counselor with a specific counseling style.
Abstract:Diagnosing seizure onset zone (SOZ) is a challenge in neurosurgery, where stereoelectroencephalography (sEEG) serves as a critical technique. In sEEG SOZ identification, the existing studies focus solely on the intra-patient representation of epileptic information, overlooking the general features of epilepsy across patients and feature interdependencies between feature elements in each contact site. In order to address the aforementioned challenges, we propose the shared attention-based autoencoder (sATAE). sATAE is trained by sEEG data across all patients, with attention blocks introduced to enhance the representation of interdependencies between feature elements. Considering the spatial diversity of sEEG across patients, we introduce graph-based method for identification SOZ of each patient. However, the current graph-based methods for sEEG SOZ identification rely exclusively on static graphs to model epileptic networks. Inspired by the finding of neuroscience that epileptic network is intricately characterized by the interplay of sophisticated equilibrium between fluctuating and stable states, we design the hierarchical fusion-based graph convolution network (HFGCN) to identify the SOZ. HFGCN integrates the dynamic and static characteristics of epileptic networks through hierarchical weighting across different hierarchies, facilitating a more comprehensive learning of epileptic features and enriching node information for sEEG SOZ identification. Combining sATAE and HFGCN, we perform comprehensive experiments with sATAE-HFGCN on the self-build sEEG dataset, which includes sEEG data from 17 patients with temporal lobe epilepsy. The results show that our method, sATAE-HFGCN, achieves superior performance for identifying the SOZ of each patient, effectively addressing the aforementioned challenges, providing an efficient solution for sEEG-based SOZ identification.
Abstract:Speech emotion recognition plays a crucial role in human-machine interaction systems. Recently various optimized Transformers have been successfully applied to speech emotion recognition. However, the existing Transformer architectures focus more on global information and require large computation. On the other hand, abundant speech emotional representations exist locally on different parts of the input speech. To tackle these problems, we propose a Multi-Scale TRansfomer (MSTR) for speech emotion recognition. It comprises of three main components: (1) a multi-scale temporal feature operator, (2) a fractal self-attention module, and (3) a scale mixer module. These three components can effectively enhance the transformer's ability to learn multi-scale local emotion representations. Experimental results demonstrate that the proposed MSTR model significantly outperforms a vanilla Transformer and other state-of-the-art methods across three speech emotion datasets: IEMOCAP, MELD and, CREMAD. In addition, it can greatly reduce the computational cost.
Abstract:In recent years, there has been significant progress in Text-to-Speech (TTS) synthesis technology, enabling the high-quality synthesis of voices in common scenarios. In unseen situations, adaptive TTS requires a strong generalization capability to speaker style characteristics. However, the existing adaptive methods can only extract and integrate coarse-grained timbre or mixed rhythm attributes separately. In this paper, we propose AS-Speech, an adaptive style methodology that integrates the speaker timbre characteristics and rhythmic attributes into a unified framework for text-to-speech synthesis. Specifically, AS-Speech can accurately simulate style characteristics through fine-grained text-based timbre features and global rhythm information, and achieve high-fidelity speech synthesis through the diffusion model. Experiments show that the proposed model produces voices with higher naturalness and similarity in terms of timbre and rhythm compared to a series of adaptive TTS models.
Abstract:Multimodal large language models (MLLMs) are flourishing, but mainly focus on images with less attention than videos, especially in sub-fields such as prompt engineering, video chain-of-thought (CoT), and instruction tuning on videos. Therefore, we try to explore the collection of CoT datasets in videos to lead to video OpenQA and improve the reasoning ability of MLLMs. Unfortunately, making such video CoT datasets is not an easy task. Given that human annotation is too cumbersome and expensive, while machine-generated is not reliable due to the hallucination issue, we develop an automatic annotation tool that combines machine and human experts, under the active learning paradigm. Active learning is an interactive strategy between the model and human experts, in this way, the workload of human labeling can be reduced and the quality of the dataset can be guaranteed. With the help of the automatic annotation tool, we strive to contribute three datasets, namely VideoCoT, TopicQA, TopicCoT. Furthermore, we propose a simple but effective benchmark based on the collected datasets, which exploits CoT to maximize the complex reasoning capabilities of MLLMs. Extensive experiments demonstrate the effectiveness our solution.
Abstract:Emotion and Intent Joint Understanding in Multimodal Conversation (MC-EIU) aims to decode the semantic information manifested in a multimodal conversational history, while inferring the emotions and intents simultaneously for the current utterance. MC-EIU is enabling technology for many human-computer interfaces. However, there is a lack of available datasets in terms of annotation, modality, language diversity, and accessibility. In this work, we propose an MC-EIU dataset, which features 7 emotion categories, 9 intent categories, 3 modalities, i.e., textual, acoustic, and visual content, and two languages, i.e., English and Mandarin. Furthermore, it is completely open-source for free access. To our knowledge, MC-EIU is the first comprehensive and rich emotion and intent joint understanding dataset for multimodal conversation. Together with the release of the dataset, we also develop an Emotion and Intent Interaction (EI$^2$) network as a reference system by modeling the deep correlation between emotion and intent in the multimodal conversation. With comparative experiments and ablation studies, we demonstrate the effectiveness of the proposed EI$^2$ method on the MC-EIU dataset. The dataset and codes will be made available at: https://github.com/MC-EIU/MC-EIU.
Abstract:Human-object interaction (HOI) detection aims to locate human-object pairs and identify their interaction categories in images. Most existing methods primarily focus on supervised learning, which relies on extensive manual HOI annotations. In this paper, we propose a novel framework, termed Knowledge Integration to HOI (KI2HOI), that effectively integrates the knowledge of visual-language model to improve zero-shot HOI detection. Specifically, the verb feature learning module is designed based on visual semantics, by employing the verb extraction decoder to convert corresponding verb queries into interaction-specific category representations. We develop an effective additive self-attention mechanism to generate more comprehensive visual representations. Moreover, the innovative interaction representation decoder effectively extracts informative regions by integrating spatial and visual feature information through a cross-attention mechanism. To deal with zero-shot learning in low-data, we leverage a priori knowledge from the CLIP text encoder to initialize the linear classifier for enhanced interaction understanding. Extensive experiments conducted on the mainstream HICO-DET and V-COCO datasets demonstrate that our model outperforms the previous methods in various zero-shot and full-supervised settings.
Abstract:The task of stock earnings forecasting has received considerable attention due to the demand investors in real-world scenarios. However, compared with financial institutions, it is not easy for ordinary investors to mine factors and analyze news. On the other hand, although large language models in the financial field can serve users in the form of dialogue robots, it still requires users to have financial knowledge to ask reasonable questions. To serve the user experience, we aim to build an automatic system, FinReport, for ordinary investors to collect information, analyze it, and generate reports after summarizing. Specifically, our FinReport is based on financial news announcements and a multi-factor model to ensure the professionalism of the report. The FinReport consists of three modules: news factorization module, return forecasting module, risk assessment module. The news factorization module involves understanding news information and combining it with stock factors, the return forecasting module aim to analysis the impact of news on market sentiment, and the risk assessment module is adopted to control investment risk. Extensive experiments on real-world datasets have well verified the effectiveness and explainability of our proposed FinReport. Our codes and datasets are available at https://github.com/frinkleko/FinReport.
Abstract:Three-dimensional point cloud anomaly detection that aims to detect anomaly data points from a training set serves as the foundation for a variety of applications, including industrial inspection and autonomous driving. However, existing point cloud anomaly detection methods often incorporate multiple feature memory banks to fully preserve local and global representations, which comes at the high cost of computational complexity and mismatches between features. To address that, we propose an unsupervised point cloud anomaly detection framework based on joint local-global features, termed PointCore. To be specific, PointCore only requires a single memory bank to store local (coordinate) and global (PointMAE) representations and different priorities are assigned to these local-global features, thereby reducing the computational cost and mismatching disturbance in inference. Furthermore, to robust against the outliers, a normalization ranking method is introduced to not only adjust values of different scales to a notionally common scale, but also transform densely-distributed data into a uniform distribution. Extensive experiments on Real3D-AD dataset demonstrate that PointCore achieves competitive inference time and the best performance in both detection and localization as compared to the state-of-the-art Reg3D-AD approach and several competitors.
Abstract:Large language models (LLMs) have been widely applied in various fields due to their excellent capability for memorizing knowledge and chain of thought (CoT). When these language models are applied in the field of psychological counseling, they often rush to provide universal advice. However, when users seek psychological support, they need to gain empathy, trust, understanding and comfort, rather than just reasonable advice. To this end, we constructed a multi-turn empathetic conversation dataset of more than 2 million samples, in which the input is the multi-turn conversation context, and the target is empathetic responses that cover expressions such as questioning, comfort, recognition, listening, trust, emotional support, etc. Experiments have shown that the empathy ability of LLMs can be significantly enhanced when finetuning by using multi-turn dialogue history and responses that are closer to the expression of a psychological consultant.