Abstract:Knee osteoarthritis (KOA) is a prevalent musculoskeletal disorder, and X-rays are commonly used for its diagnosis due to their cost-effectiveness. Magnetic Resonance Imaging (MRI), on the other hand, offers detailed soft tissue visualization and has become a valuable supplementary diagnostic tool for KOA. Unfortunately, the high cost and limited accessibility of MRI hinder its widespread use, leaving many patients with KOA reliant solely on X-ray imaging. In this study, we introduce a novel diffusion-based Xray2MRI model capable of generating pseudo-MRI volumes from one single X-ray image. In addition to using X-rays as conditional input, our model integrates target depth, KOA probability distribution, and image intensity distribution modules to guide the synthesis process, ensuring that the generated corresponding slices accurately correspond to the anatomical structures. Experimental results demonstrate that by integrating information from X-rays with additional input data, our proposed approach is capable of generating pseudo-MRI sequences that approximate real MRI scans. Moreover, by increasing the inference times, the model achieves effective interpolation, further improving the continuity and smoothness of the generated MRI sequences, representing one promising initial attempt for cost-effective medical imaging solutions.
Abstract:Knee Osteoarthritis (KOA) is a common musculoskeletal disorder that significantly affects the mobility of older adults. In the medical domain, images containing temporal data are frequently utilized to study temporal dynamics and statistically monitor disease progression. While deep learning-based generative models for natural images have been widely researched, there are comparatively few methods available for synthesizing temporal knee X-rays. In this work, we introduce a novel deep-learning model designed to synthesize intermediate X-ray images between a specific patient's healthy knee and severe KOA stages. During the testing phase, based on a healthy knee X-ray, the proposed model can produce a continuous and effective sequence of KOA X-ray images with varying degrees of severity. Specifically, we introduce a Diffusion-based Morphing Model by modifying the Denoising Diffusion Probabilistic Model. Our approach integrates diffusion and morphing modules, enabling the model to capture spatial morphing details between source and target knee X-ray images and synthesize intermediate frames along a geodesic path. A hybrid loss consisting of diffusion loss, morphing loss, and supervision loss was employed. We demonstrate that our proposed approach achieves the highest temporal frame synthesis performance, effectively augmenting data for classification models and simulating the progression of KOA.