Abstract:The demand for high-quality synthetic data for model training and augmentation has never been greater in medical imaging. However, current evaluations predominantly rely on computational metrics that fail to align with human expert recognition. This leads to synthetic images that may appear realistic numerically but lack clinical authenticity, posing significant challenges in ensuring the reliability and effectiveness of AI-driven medical tools. To address this gap, we introduce GazeVal, a practical framework that synergizes expert eye-tracking data with direct radiological evaluations to assess the quality of synthetic medical images. GazeVal leverages gaze patterns of radiologists as they provide a deeper understanding of how experts perceive and interact with synthetic data in different tasks (i.e., diagnostic or Turing tests). Experiments with sixteen radiologists revealed that 96.6% of the generated images (by the most recent state-of-the-art AI algorithm) were identified as fake, demonstrating the limitations of generative AI in producing clinically accurate images.
Abstract:Generally, X-ray, as an inexpensive and popular medical imaging technique, is widely chosen by medical practitioners. With the development of medical technology, Magnetic Resonance Imaging (MRI), an advanced medical imaging technique, has already become a supplementary diagnostic option for the diagnosis of KOA. We propose in this paper a deep-learning-based approach for generating MRI from one corresponding X-ray. Our method uses the hidden variables of a Convolutional Auto-Encoder (CAE) model, trained for reconstructing X-ray image, as inputs of a generator model to provide 3D MRI.
Abstract:Magnetic Resonance Imaging (MRI) offers critical insights into microstructural details, however, the spatial resolution of standard 1.5T imaging systems is often limited. In contrast, 7T MRI provides significantly enhanced spatial resolution, enabling finer visualization of anatomical structures. Though this, the high cost and limited availability of 7T MRI hinder its widespread use in clinical settings. To address this challenge, a novel Super-Resolution (SR) model is proposed to generate 7T-like MRI from standard 1.5T MRI scans. Our approach leverages a diffusion-based architecture, incorporating gradient nonlinearity correction and bias field correction data from 7T imaging as guidance. Moreover, to improve deployability, a progressive distillation strategy is introduced. Specifically, the student model refines the 7T SR task with steps, leveraging feature maps from the inference phase of the teacher model as guidance, aiming to allow the student model to achieve progressively 7T SR performance with a smaller, deployable model size. Experimental results demonstrate that our baseline teacher model achieves state-of-the-art SR performance. The student model, while lightweight, sacrifices minimal performance. Furthermore, the student model is capable of accepting MRI inputs at varying resolutions without the need for retraining, significantly further enhancing deployment flexibility. The clinical relevance of our proposed method is validated using clinical data from Massachusetts General Hospital. Our code is available at https://github.com/ZWang78/SR.
Abstract:Knee osteoarthritis (KOA) is a prevalent musculoskeletal disorder, and X-rays are commonly used for its diagnosis due to their cost-effectiveness. Magnetic Resonance Imaging (MRI), on the other hand, offers detailed soft tissue visualization and has become a valuable supplementary diagnostic tool for KOA. Unfortunately, the high cost and limited accessibility of MRI hinder its widespread use, leaving many patients with KOA reliant solely on X-ray imaging. In this study, we introduce a novel diffusion-based Xray2MRI model capable of generating pseudo-MRI volumes from one single X-ray image. In addition to using X-rays as conditional input, our model integrates target depth, KOA probability distribution, and image intensity distribution modules to guide the synthesis process, ensuring that the generated corresponding slices accurately correspond to the anatomical structures. Experimental results demonstrate that by integrating information from X-rays with additional input data, our proposed approach is capable of generating pseudo-MRI sequences that approximate real MRI scans. Moreover, by increasing the inference times, the model achieves effective interpolation, further improving the continuity and smoothness of the generated MRI sequences, representing one promising initial attempt for cost-effective medical imaging solutions.
Abstract:Knee Osteoarthritis (KOA) is a common musculoskeletal disorder that significantly affects the mobility of older adults. In the medical domain, images containing temporal data are frequently utilized to study temporal dynamics and statistically monitor disease progression. While deep learning-based generative models for natural images have been widely researched, there are comparatively few methods available for synthesizing temporal knee X-rays. In this work, we introduce a novel deep-learning model designed to synthesize intermediate X-ray images between a specific patient's healthy knee and severe KOA stages. During the testing phase, based on a healthy knee X-ray, the proposed model can produce a continuous and effective sequence of KOA X-ray images with varying degrees of severity. Specifically, we introduce a Diffusion-based Morphing Model by modifying the Denoising Diffusion Probabilistic Model. Our approach integrates diffusion and morphing modules, enabling the model to capture spatial morphing details between source and target knee X-ray images and synthesize intermediate frames along a geodesic path. A hybrid loss consisting of diffusion loss, morphing loss, and supervision loss was employed. We demonstrate that our proposed approach achieves the highest temporal frame synthesis performance, effectively augmenting data for classification models and simulating the progression of KOA.
Abstract:The prediction of ship trajectories is a growing field of study in artificial intelligence. Traditional methods rely on the use of LSTM, GRU networks, and even Transformer architectures for the prediction of spatio-temporal series. This study proposes a viable alternative for predicting these trajectories using only GNSS positions. It considers this spatio-temporal problem as a natural language processing problem. The latitude/longitude coordinates of AIS messages are transformed into cell identifiers using the H3 index. Thanks to the pseudo-octal representation, it becomes easier for language models to learn the spatial hierarchy of the H3 index. The method is compared with a classical Kalman filter, widely used in the maritime domain, and introduces the Fr\'echet distance as the main evaluation metric. We show that it is possible to predict ship trajectories quite precisely up to 8 hours with 30 minutes of context. We demonstrate that this alternative works well enough to predict trajectories worldwide.
Abstract:Conventional imaging diagnostics frequently encounter bottlenecks due to manual inspection, which can lead to delays and inconsistencies. Although deep learning offers a pathway to automation and enhanced accuracy, foundational models in computer vision often emphasize global context at the expense of local details, which are vital for medical imaging diagnostics. To address this, we harness the Swin Transformer's capacity to discern extended spatial dependencies within images through the hierarchical framework. Our novel contribution lies in refining local feature representations, orienting them specifically toward the final distribution of the classifier. This method ensures that local features are not only preserved but are also enriched with task-specific information, enhancing their relevance and detail at every hierarchical level. By implementing this strategy, our model demonstrates significant robustness and precision, as evidenced by extensive validation of two established benchmarks for Knee OsteoArthritis (KOA) grade classification. These results highlight our approach's effectiveness and its promising implications for the future of medical imaging diagnostics. Our implementation is available on https://github.com/mtliba/KOA_NLCS2024
Abstract:Neural network quantization is an essential technique for deploying models on resource-constrained devices. However, its impact on model perceptual fields, particularly regarding class activation maps (CAMs), remains a significant area of investigation. In this study, we explore how quantization alters the spatial recognition ability of the perceptual field of vision models, shedding light on the alignment between CAMs and visual saliency maps across various architectures. Leveraging a dataset of 10,000 images from ImageNet, we rigorously evaluate six diverse foundational CNNs: VGG16, ResNet50, EfficientNet, MobileNet, SqueezeNet, and DenseNet. We uncover nuanced changes in CAMs and their alignment with human visual saliency maps through systematic quantization techniques applied to these models. Our findings reveal the varying sensitivities of different architectures to quantization and underscore its implications for real-world applications in terms of model performance and interpretability. The primary contribution of this work revolves around deepening our understanding of neural network quantization, providing insights crucial for deploying efficient and interpretable models in practical settings.
Abstract:The widespread adoption of large language models (LLMs) across diverse AI applications is proof of the outstanding achievements obtained in several tasks, such as text mining, text generation, and question answering. However, LLMs are not exempt from drawbacks. One of the most concerning aspects regards the emerging problematic phenomena known as "Hallucinations". They manifest in text generation systems, particularly in question-answering systems reliant on LLMs, potentially resulting in false or misleading information propagation. This paper delves into the underlying causes of AI hallucination and elucidates its significance in artificial intelligence. In particular, Hallucination classification is tackled over several tasks (Machine Translation, Question and Answer, Dialog Systems, Summarisation Systems, Knowledge Graph with LLMs, and Visual Question Answer). Additionally, we explore potential strategies to mitigate hallucinations, aiming to enhance the overall reliability of LLMs. Our research addresses this critical issue within the HeReFaNMi (Health-Related Fake News Mitigation) project, generously supported by NGI Search, dedicated to combating Health-Related Fake News dissemination on the Internet. This endeavour represents a concerted effort to safeguard the integrity of information dissemination in an age of evolving AI technologies.
Abstract:Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint. Early detection and diagnosis are crucial for successful clinical intervention and management to prevent severe complications, such as loss of mobility. In this paper, we propose an automated approach that employs the Swin Transformer to predict the severity of KOA. Our model uses publicly available radiographic datasets with Kellgren and Lawrence scores to enable early detection and severity assessment. To improve the accuracy of our model, we employ a multi-prediction head architecture that utilizes multi-layer perceptron classifiers. Additionally, we introduce a novel training approach that reduces the data drift between multiple datasets to ensure the generalization ability of the model. The results of our experiments demonstrate the effectiveness and feasibility of our approach in predicting KOA severity accurately.