Abstract:The demand for high-quality synthetic data for model training and augmentation has never been greater in medical imaging. However, current evaluations predominantly rely on computational metrics that fail to align with human expert recognition. This leads to synthetic images that may appear realistic numerically but lack clinical authenticity, posing significant challenges in ensuring the reliability and effectiveness of AI-driven medical tools. To address this gap, we introduce GazeVal, a practical framework that synergizes expert eye-tracking data with direct radiological evaluations to assess the quality of synthetic medical images. GazeVal leverages gaze patterns of radiologists as they provide a deeper understanding of how experts perceive and interact with synthetic data in different tasks (i.e., diagnostic or Turing tests). Experiments with sixteen radiologists revealed that 96.6% of the generated images (by the most recent state-of-the-art AI algorithm) were identified as fake, demonstrating the limitations of generative AI in producing clinically accurate images.
Abstract:The large volume of electroencephalograph (EEG) data produced by brain-computer interface (BCI) systems presents challenges for rapid transmission over bandwidth-limited channels in Internet of Things (IoT) networks. To address the issue, we propose a novel multi-channel asymmetrical variational discrete cosine transform (DCT) network for EEG data compression within an edge-fog computing framework. At the edge level, low-complexity DCT compression units are designed using parallel trainable hard-thresholding and scaling operators to remove redundant data and extract the effective latent space representation. At the fog level, an adaptive filter bank is applied to merge important features from adjacent channels into each individual channel by leveraging inter-channel correlations. Then, the inverse DCT reconstructed multi-head attention is developed to capture both local and global dependencies and reconstruct the original signals. Furthermore, by applying the principles of variational inference, a new evidence lower bound is formulated as the loss function, driving the model to balance compression efficiency and reconstruction accuracy. Experimental results on two public datasets demonstrate that the proposed method achieves superior compression performance without sacrificing any useful information for BCI detection compared with state-of-the-art techniques, indicating a feasible solution for EEG data compression.
Abstract:Bearing data compression is vital to manage the large volumes of data generated during condition monitoring. In this paper, a novel asymmetrical autoencoder with a lifting wavelet transform (LWT) layer is developed to compress bearing sensor data. The encoder part of the network consists of a convolutional layer followed by a wavelet filterbank layer. Specifically, a dual-channel convolutional block with diverse convolutional kernel sizes and varying processing depths is integrated into the wavelet filterbank layer to enable comprehensive feature extraction from the wavelet domain. Additionally, the adaptive hard-thresholding nonlinearity is applied to remove redundant components while denoising the primary wavelet coefficients. On the decoder side, inverse LWT, along with multiple linear layers and activation functions, is employed to reconstruct the original signals. Furthermore, to enhance compression efficiency, a sparsity constraint is introduced during training to impose sparsity on the latent representations. The experimental results demonstrate that the proposed approach achieves superior data compression performance compared to state-of-the-art methods.
Abstract:In this article, we introduce the concept of controllability and observability to the M amba architecture in our Sparse-Mamba (S-Mamba) for natural language processing (NLP) applications. The structured state space model (SSM) development in recent studies, such as Mamba and Mamba2, outperformed and solved the computational inefficiency of transformers and large language models (LLMs) on longer sequences in small to medium NLP tasks. The Mamba SSMs architecture drops the need for attention layer or MLB blocks in transformers. However, the current Mamba models do not reinforce the controllability on state space equations in the calculation of A, B, C, and D matrices at each time step, which increase the complexity and the computational cost needed. In this article we show that the number of parameters can be significantly decreased by reinforcing controllability in the state space equations in the proposed Sparse-Mamba (S-Mamba), while maintaining the performance. The controllable n x n state matrix A is sparse and it has only n free parameters. Our novel approach will ensure a controllable system and could be the gate key for Mamba 3.
Abstract:Magnetic field inhomogeneity correction remains a challenging task in MRI analysis. Most established techniques are designed for brain MRI by supposing that image intensities in the identical tissue follow a uniform distribution. Such an assumption cannot be easily applied to other organs, especially those that are small in size and heterogeneous in texture (large variations in intensity), such as the prostate. To address this problem, this paper proposes a probabilistic Hadamard U-Net (PHU-Net) for prostate MRI bias field correction. First, a novel Hadamard U-Net (HU-Net) is introduced to extract the low-frequency scalar field, multiplied by the original input to obtain the prototypical corrected image. HU-Net converts the input image from the time domain into the frequency domain via Hadamard transform. In the frequency domain, high-frequency components are eliminated using the trainable filter (scaling layer), hard-thresholding layer, and sparsity penalty. Next, a conditional variational autoencoder is used to encode possible bias field-corrected variants into a low-dimensional latent space. Random samples drawn from latent space are then incorporated with a prototypical corrected image to generate multiple plausible images. Experimental results demonstrate the effectiveness of PHU-Net in correcting bias-field in prostate MRI with a fast inference speed. It has also been shown that prostate MRI segmentation accuracy improves with the high-quality corrected images from PHU-Net. The code will be available in the final version of this manuscript.
Abstract:The lack of an efficient compression model remains a challenge for the wireless transmission of gearbox data in non-contact gear fault diagnosis problems. In this paper, we present a signal-adaptive asymmetrical autoencoder with a transform domain layer to compress sensor signals. First, a new discrete cosine Stockwell transform (DCST) layer is introduced to replace linear layers in a multi-layer autoencoder. A trainable filter is implemented in the DCST domain by utilizing the multiplication property of the convolution. A trainable hard-thresholding layer is applied to reduce redundant data in the DCST layer to make the feature map sparse. In comparison to the linear layer, the DCST layer reduces the number of trainable parameters and improves the accuracy of data reconstruction. Second, training the autoencoder with a sparsifying DCST layer only requires a small number of datasets. The proposed method is superior to other autoencoder-based methods on the University of Connecticut (UoC) and Southeast University (SEU) gearbox datasets, as the average quality score is improved by 2.00% at the lowest and 32.35% at the highest with a limited number of training samples
Abstract:Domain generalization aims to train models on multiple source domains so that they can generalize well to unseen target domains. Among many domain generalization methods, Fourier-transform-based domain generalization methods have gained popularity primarily because they exploit the power of Fourier transformation to capture essential patterns and regularities in the data, making the model more robust to domain shifts. The mainstream Fourier-transform-based domain generalization swaps the Fourier amplitude spectrum while preserving the phase spectrum between the source and the target images. However, it neglects background interference in the amplitude spectrum. To overcome this limitation, we introduce a soft-thresholding function in the Fourier domain. We apply this newly designed algorithm to retinal fundus image segmentation, which is important for diagnosing ocular diseases but the neural network's performance can degrade across different sources due to domain shifts. The proposed technique basically enhances fundus image augmentation by eliminating small values in the Fourier domain and providing better generalization. The innovative nature of the soft thresholding fused with Fourier-transform-based domain generalization improves neural network models' performance by reducing the target images' background interference significantly. Experiments on public data validate our approach's effectiveness over conventional and state-of-the-art methods with superior segmentation metrics.
Abstract:Traditional preamble detection algorithms have low accuracy in the grant-based random access scheme in massive machine-type communication (mMTC). We present a novel preamble detection algorithm based on Stein variational gradient descent (SVGD) at the second step of the random access procedure. It efficiently leverages deterministic updates of particles for continuous inference. To further enhance the performance of the SVGD detector, especially in a dense user scenario, we propose a normalized SVGD detector with momentum. It utilizes the momentum and a bias correction term to reduce the preamble estimation errors during the gradient descent process. Simulation results show that the proposed algorithm performs better than Markov Chain Monte Carlo-based approaches in terms of detection accuracy.
Abstract:Electroencephalogram (EEG) data compression is necessary for wireless recording applications to reduce the amount of data that needs to be transmitted. In this paper, an asymmetrical sparse autoencoder with a discrete cosine transform (DCT) layer is proposed to compress EEG signals. The encoder module of the autoencoder has a combination of a fully connected linear layer and the DCT layer to reduce redundant data using hard-thresholding nonlinearity. Furthermore, the DCT layer includes trainable hard-thresholding parameters and scaling layers to give emphasis or de-emphasis on individual DCT coefficients. Finally, the one-by-one convolutional layer generates the latent space. The sparsity penalty-based cost function is employed to keep the feature map as sparse as possible in the latent space. The latent space data is transmitted to the receiver. The decoder module of the autoencoder is designed using the inverse DCT and two fully connected linear layers to improve the accuracy of data reconstruction. In comparison to other state-of-the-art methods, the proposed method significantly improves the average quality score in various data compression experiments.
Abstract:In this paper, we propose a novel Hadamard Transform (HT)-based neural network layer for hybrid quantum-classical computing. It implements the regular convolutional layers in the Hadamard transform domain. The idea is based on the HT convolution theorem which states that the dyadic convolution between two vectors is equivalent to the element-wise multiplication of their HT representation. Computing the HT is simply the application of a Hadamard gate to each qubit individually, so the HT computations of our proposed layer can be implemented on a quantum computer. Compared to the regular Conv2D layer, the proposed HT-perceptron layer is computationally more efficient. Compared to a CNN with the same number of trainable parameters and 99.26\% test accuracy, our HT network reaches 99.31\% test accuracy with 57.1\% MACs reduced in the MNIST dataset; and in our ImageNet-1K experiments, our HT-based ResNet-50 exceeds the accuracy of the baseline ResNet-50 by 0.59\% center-crop top-1 accuracy using 11.5\% fewer parameters with 12.6\% fewer MACs.