Abstract:In the realm of object pose estimation, scenarios involving both dynamic objects and moving cameras are prevalent. However, the scarcity of corresponding real-world datasets significantly hinders the development and evaluation of robust pose estimation models. This is largely attributed to the inherent challenges in accurately annotating object poses in dynamic scenes captured by moving cameras. To bridge this gap, this paper presents a novel dataset DynOPETs and a dedicated data acquisition and annotation pipeline tailored for object pose estimation and tracking in such unconstrained environments. Our efficient annotation method innovatively integrates pose estimation and pose tracking techniques to generate pseudo-labels, which are subsequently refined through pose graph optimization. The resulting dataset offers accurate pose annotations for dynamic objects observed from moving cameras. To validate the effectiveness and value of our dataset, we perform comprehensive evaluations using 18 state-of-the-art methods, demonstrating its potential to accelerate research in this challenging domain. The dataset will be made publicly available to facilitate further exploration and advancement in the field.
Abstract:We propose a novel, vision-only object-level SLAM framework for automotive applications representing 3D shapes by implicit signed distance functions. Our key innovation consists of augmenting the standard neural representation by a normalizing flow network. As a result, achieving strong representation power on the specific class of road vehicles is made possible by compact networks with only 16-dimensional latent codes. Furthermore, the newly proposed architecture exhibits a significant performance improvement in the presence of only sparse and noisy data, which is demonstrated through comparative experiments on synthetic data. The module is embedded into the back-end of a stereo-vision based framework for joint, incremental shape optimization. The loss function is given by a combination of a sparse 3D point-based SDF loss, a sparse rendering loss, and a semantic mask-based silhouette-consistency term. We furthermore leverage semantic information to determine keypoint extraction density in the front-end. Finally, experimental results on real-world data reveal accurate and reliable performance comparable to alternative frameworks that make use of direct depth readings. The proposed method performs well with only sparse 3D points obtained from bundle adjustment, and eventually continues to deliver stable results even under exclusive use of the mask-consistency term.
Abstract:The present paper proposes optimization-based solutions to visual SLAM with a vehicle-mounted surround-view camera system. Owing to their original use-case, such systems often only contain a single camera facing into either direction and very limited overlap between fields of view. Our novelty consist of three optimization modules targeting at practical online calibration of exterior orientations from simple two-view geometry, reliable front-end initialization of relative displacements, and accurate back-end optimization using a continuous-time trajectory model. The commonality between the proposed modules is given by the fact that all three of them exploit motion priors that are related to the inherent non-holonomic characteristics of passenger vehicle motion. In contrast to prior related art, the proposed modules furthermore excel in terms of bypassing partial unobservabilities in the transformation variables that commonly occur for Ackermann-motion. As a further contribution, the modules are built into a novel surround-view camera SLAM system that specifically targets deployment on Ackermann vehicles operating in urban environments. All modules are studied in the context of in-depth ablation studies, and the practical validity of the entire framework is supported by a successful application to challenging, large-scale publicly available online datasets. Note that upon acceptance, the entire framework is scheduled for open-source release as part of an extension of the OpenGV library.
Abstract:For event cameras, current sparse geometric solvers for egomotion estimation assume that the rotational displacements are known, such as those provided by an IMU. Thus, they can only recover the translational motion parameters. Recovering full-DoF motion parameters using a sparse geometric solver is a more challenging task, and has not yet been investigated. In this paper, we propose several solvers to estimate both rotational and translational velocities within a unified framework. Our method leverages event manifolds induced by line segments. The problem formulations are based on either an incidence relation for lines or a novel coplanarity relation for normal vectors. We demonstrate the possibility of recovering full-DoF egomotion parameters for both angular and linear velocities without requiring extra sensor measurements or motion priors. To achieve efficient optimization, we exploit the Adam framework with a first-order approximation of rotations for quick initialization. Experiments on both synthetic and real-world data demonstrate the effectiveness of our method. The code is available at https://github.com/jizhaox/relpose-event.
Abstract:As the ubiquity of smart mobile devices continues to rise, Optical Camera Communication systems have gained more attention as a solution for efficient and private data streaming. This system utilizes optical cameras to receive data from digital screens via visible light. Despite their promise, most of them are hindered by dynamic factors such as screen refreshing and rapid camera motion. CMOS cameras, often serving as the receivers, suffer from limited frame rates and motion-induced image blur, which degrade overall performance. To address these challenges, this paper unveils a novel system that utilizes event cameras. We introduce a dynamic visual marker and design event-based tracking algorithms to achieve fast localization and data streaming. Remarkably, the event camera's unique capabilities mitigate issues related to screen refresh rates and camera motion, enabling a high throughput of up to 114 Kbps in static conditions, and a 1 cm localization accuracy with 1% bit error rate under various camera motions.
Abstract:While automatically generated polynomial elimination templates have sparked great progress in the field of 3D computer vision, there remain many problems for which the degree of the constraints or the number of unknowns leads to intractability. In recent years, homotopy continuation has been introduced as a plausible alternative. However, the method currently depends on expensive parallel tracking of all possible solutions in the complex domain, or a classification network for starting problem-solution pairs trained over a limited set of real-world examples. Our innovation consists of employing a regression network trained in simulation to directly predict a solution from input correspondences, followed by an online simulator that invents a consistent problem-solution pair. Subsequently, homotopy continuation is applied to track that single solution back to the original problem. We apply this elegant combination to generalized camera resectioning, and also introduce a new solution to the challenging generalized relative pose and scale problem. As demonstrated, the proposed method successfully compensates the raw error committed by the regressor alone, and leads to state-of-the-art efficiency and success rates while running on CPU resources, only.
Abstract:In the realm of computer vision, the perception and reconstruction of the 3D world through vision signals heavily rely on camera intrinsic parameters, which have long been a subject of intense research within the community. In practical applications, without a strong scene geometry prior like the Manhattan World assumption or special artificial calibration patterns, monocular focal length estimation becomes a challenging task. In this paper, we propose a method for monocular focal length estimation using category-level object priors. Based on two well-studied existing tasks: monocular depth estimation and category-level object canonical representation learning, our focal solver takes depth priors and object shape priors from images containing objects and estimates the focal length from triplets of correspondences in closed form. Our experiments on simulated and real world data demonstrate that the proposed method outperforms the current state-of-the-art, offering a promising solution to the long-standing monocular focal length estimation problem.
Abstract:Reliable self-localization is a foundational skill for many intelligent mobile platforms. This paper explores the use of event cameras for motion tracking thereby providing a solution with inherent robustness under difficult dynamics and illumination. In order to circumvent the challenge of event camera-based mapping, the solution is framed in a cross-modal way. It tracks a map representation that comes directly from frame-based cameras. Specifically, the proposed method operates on top of gaussian splatting, a state-of-the-art representation that permits highly efficient and realistic novel view synthesis. The key of our approach consists of a novel pose parametrization that uses a reference pose plus first order dynamics for local differential image rendering. The latter is then compared against images of integrated events in a staggered coarse-to-fine optimization scheme. As demonstrated by our results, the realistic view rendering ability of gaussian splatting leads to stable and accurate tracking across a variety of both publicly available and newly recorded data sequences.
Abstract:Pose estimation and tracking of objects is a fundamental application in 3D vision. Event cameras possess remarkable attributes such as high dynamic range, low latency, and resilience against motion blur, which enables them to address challenging high dynamic range scenes or high-speed motion. These features make event cameras an ideal complement over standard cameras for object pose estimation. In this work, we propose a line-based robust pose estimation and tracking method for planar or non-planar objects using an event camera. Firstly, we extract object lines directly from events, then provide an initial pose using a globally-optimal Branch-and-Bound approach, where 2D-3D line correspondences are not known in advance. Subsequently, we utilize event-line matching to establish correspondences between 2D events and 3D models. Furthermore, object poses are refined and continuously tracked by minimizing event-line distances. Events are assigned different weights based on these distances, employing robust estimation algorithms. To evaluate the precision of the proposed methods in object pose estimation and tracking, we have devised and established an event-based moving object dataset. Compared against state-of-the-art methods, the robustness and accuracy of our methods have been validated both on synthetic experiments and the proposed dataset. The source code is available at https://github.com/Zibin6/LOPET.
Abstract:Event cameras are an interesting visual exteroceptive sensor that reacts to brightness changes rather than integrating absolute image intensities. Owing to this design, the sensor exhibits strong performance in situations of challenging dynamics and illumination conditions. While event-based simultaneous tracking and mapping remains a challenging problem, a number of recent works have pointed out the sensor's suitability for prior map-based tracking. By making use of cross-modal registration paradigms, the camera's ego-motion can be tracked across a large spectrum of illumination and dynamics conditions on top of accurate maps that have been created a priori by more traditional sensors. The present paper follows up on a recently introduced event-based geometric semi-dense tracking paradigm, and proposes the addition of inertial signals in order to robustify the estimation. More specifically, the added signals provide strong cues for pose initialization as well as regularization during windowed, multi-frame tracking. As a result, the proposed framework achieves increased performance under challenging illumination conditions as well as a reduction of the rate at which intermediate event representations need to be registered in order to maintain stable tracking across highly dynamic sequences. Our evaluation focuses on a diverse set of real world sequences and comprises a comparison of our proposed method against a purely event-based alternative running at different rates.