Abstract:Reliable self-localization is a foundational skill for many intelligent mobile platforms. This paper explores the use of event cameras for motion tracking thereby providing a solution with inherent robustness under difficult dynamics and illumination. In order to circumvent the challenge of event camera-based mapping, the solution is framed in a cross-modal way. It tracks a map representation that comes directly from frame-based cameras. Specifically, the proposed method operates on top of gaussian splatting, a state-of-the-art representation that permits highly efficient and realistic novel view synthesis. The key of our approach consists of a novel pose parametrization that uses a reference pose plus first order dynamics for local differential image rendering. The latter is then compared against images of integrated events in a staggered coarse-to-fine optimization scheme. As demonstrated by our results, the realistic view rendering ability of gaussian splatting leads to stable and accurate tracking across a variety of both publicly available and newly recorded data sequences.
Abstract:Event cameras are an interesting visual exteroceptive sensor that reacts to brightness changes rather than integrating absolute image intensities. Owing to this design, the sensor exhibits strong performance in situations of challenging dynamics and illumination conditions. While event-based simultaneous tracking and mapping remains a challenging problem, a number of recent works have pointed out the sensor's suitability for prior map-based tracking. By making use of cross-modal registration paradigms, the camera's ego-motion can be tracked across a large spectrum of illumination and dynamics conditions on top of accurate maps that have been created a priori by more traditional sensors. The present paper follows up on a recently introduced event-based geometric semi-dense tracking paradigm, and proposes the addition of inertial signals in order to robustify the estimation. More specifically, the added signals provide strong cues for pose initialization as well as regularization during windowed, multi-frame tracking. As a result, the proposed framework achieves increased performance under challenging illumination conditions as well as a reduction of the rate at which intermediate event representations need to be registered in order to maintain stable tracking across highly dynamic sequences. Our evaluation focuses on a diverse set of real world sequences and comprises a comparison of our proposed method against a purely event-based alternative running at different rates.
Abstract:Pose graph relaxation has become an indispensable addition to SLAM enabling efficient global registration of sensor reference frames under the objective of satisfying pair-wise relative transformation constraints. The latter may be given by incremental motion estimation or global place recognition. While the latter case enables loop closures and drift compensation, care has to be taken in the monocular case in which local estimates of structure and displacements can differ from reality not just in terms of noise, but also in terms of a scale factor. Owing to the accumulation of scale propagation errors, this scale factor is drifting over time, hence scale-drift aware pose graph relaxation has been introduced. We extend this idea to cases in which the relative scale between subsequent sensor frames is unknown, a situation that can easily occur if monocular SLAM enters re-initialization and no reliable overlap between successive local maps can be identified. The approach is realized by a hybrid pose graph formulation that combines the regular similarity consistency terms with novel, scale-blind constraints. We apply the technique to the practically relevant case of small indoor service robots capable of effectuating purely rotational displacements, a condition that can easily cause tracking failures. We demonstrate that globally consistent trajectories can be recovered even if multiple re-initializations occur along the loop, and present an in-depth study of success and failure cases.
Abstract:We present a novel approach for relocalization or place recognition, a fundamental problem to be solved in many robotics, automation, and AR applications. Rather than relying on often unstable appearance information, we consider a situation in which the reference map is given in the form of localized objects. Our localization framework relies on 3D semantic object detections, which are then associated to objects in the map. Possible pair-wise association sets are grown based on hierarchical clustering using a merge metric that evaluates spatial compatibility. The latter notably uses information about relative object configurations, which is invariant with respect to global transformations. Association sets are furthermore updated and expanded as the camera incrementally explores the environment and detects further objects. We test our algorithm in several challenging situations including dynamic scenes, large view-point changes, and scenes with repeated instances. Our experiments demonstrate that our approach outperforms prior art in terms of both robustness and accuracy.