Abstract:Camera calibration is a crucial step in photogrammetry and 3D vision applications. In practical scenarios with a long working distance to cover a wide area, target-based calibration methods become complicated and inflexible due to site limitations. This paper introduces a novel camera calibration method using a collimator system, which can provide a reliable and controllable calibration environment for cameras with varying working distances. Based on the optical geometry of the collimator system, we prove that the relative motion between the target and camera conforms to the spherical motion model, reducing the original 6DOF relative motion to 3DOF pure rotation motion. Furthermore, a closed-form solver for multiple views and a minimal solver for two views are proposed for camera calibration. The performance of our method is evaluated in both synthetic and real-world experiments, which verify the feasibility of calibration using the collimator system and demonstrate that our method is superior to the state-of-the-art methods. Demo code is available at https://github.com/LiangSK98/CollimatorCalibration.
Abstract:Pose estimation and tracking of objects is a fundamental application in 3D vision. Event cameras possess remarkable attributes such as high dynamic range, low latency, and resilience against motion blur, which enables them to address challenging high dynamic range scenes or high-speed motion. These features make event cameras an ideal complement over standard cameras for object pose estimation. In this work, we propose a line-based robust pose estimation and tracking method for planar or non-planar objects using an event camera. Firstly, we extract object lines directly from events, then provide an initial pose using a globally-optimal Branch-and-Bound approach, where 2D-3D line correspondences are not known in advance. Subsequently, we utilize event-line matching to establish correspondences between 2D events and 3D models. Furthermore, object poses are refined and continuously tracked by minimizing event-line distances. Events are assigned different weights based on these distances, employing robust estimation algorithms. To evaluate the precision of the proposed methods in object pose estimation and tracking, we have devised and established an event-based moving object dataset. Compared against state-of-the-art methods, the robustness and accuracy of our methods have been validated both on synthetic experiments and the proposed dataset. The source code is available at https://github.com/Zibin6/LOPET.
Abstract:Relative pose estimation using point correspondences (PC) is a widely used technique. A minimal configuration of six PCs is required for generalized cameras. In this paper, we present several minimal solvers that use six PCs to compute the 6DOF relative pose of a multi-camera system, including a minimal solver for the generalized camera and two minimal solvers for the practical configuration of two-camera rigs. The equation construction is based on the decoupling of rotation and translation. Rotation is represented by Cayley or quaternion parametrization, and translation can be eliminated by using the hidden variable technique. Ray bundle constraints are found and proven when a subset of PCs relate the same cameras across two views. This is the key to reducing the number of solutions and generating numerically stable solvers. Moreover, all configurations of six-point problems for multi-camera systems are enumerated. Extensive experiments demonstrate that our solvers are more accurate than the state-of-the-art six-point methods, while achieving better performance in efficiency.
Abstract:We present a novel method to compute the relative pose of multi-camera systems using two affine correspondences (ACs). Existing solutions to the multi-camera relative pose estimation are either restricted to special cases of motion, have too high computational complexity, or require too many point correspondences (PCs). Thus, these solvers impede an efficient or accurate relative pose estimation when applying RANSAC as a robust estimator. This paper shows that the 6DOF relative pose estimation problem using ACs permits a feasible minimal solution, when exploiting the geometric constraints between ACs and multi-camera systems using a special parameterization. We present a problem formulation based on two ACs that encompass two common types of ACs across two views, i.e., inter-camera and intra-camera. Moreover, the framework for generating the minimal solvers can be extended to solve various relative pose estimation problems, e.g., 5DOF relative pose estimation with known rotation angle prior. Experiments on both virtual and real multi-camera systems prove that the proposed solvers are more efficient than the state-of-the-art algorithms, while resulting in a better relative pose accuracy. Source code is available at https://github.com/jizhaox/relpose-mcs-depth.
Abstract:The point correspondence (PC) and affine correspondence (AC) are widely used for relative pose estimation. An AC consists of a PC across two views and an affine transformation between the small patches around this PC. Previous work demonstrates that one AC generally provides three independent constraints for relative pose estimation. For multi-camera systems, there is still not any AC-based minimal solver for general relative pose estimation. To deal with this problem, we propose a complete solution to relative pose estimation from two ACs for multi-camera systems, consisting of a series of minimal solvers. The solver generation in our solution is based on Cayley or quaternion parameterization for rotation and hidden variable technique to eliminate translation. This solver generation method is also naturally applied to relative pose estimation from PCs, resulting in a new six-point method for multi-camera systems. A few extensions are made, including relative pose estimation with known rotation angle and/or with unknown focal lengths. Extensive experiments demonstrate that the proposed AC-based solvers and PC-based solvers are effective and efficient on synthetic and real-world datasets.
Abstract:We propose four novel solvers for estimating the relative pose of a multi-camera system from affine correspondences (ACs). A new constraint is derived interpreting the relationship of ACs and the generalized camera model. Using the constraint, it is shown that a minimum of two ACs are enough for recovering the 6DOF relative pose, i.e., 3D rotation and translation, of the system. Considering planar camera motion, we propose a minimal solution using a single AC and a solver with two ACs to overcome the degenerate case. Also, we propose a minimal solution using two ACs with known gravity vector, e.g., from an IMU. Since the proposed methods require significantly fewer correspondences than state-of-the-art algorithms, they can be efficiently used within RANSAC for outlier removal and initial motion estimation. The solvers are tested both on synthetic data and on real-world scenes from the KITTI benchmark. It is shown that the accuracy of the estimated poses is superior to the state-of-the-art techniques.
Abstract:In this paper we present four cases of minimal solutions for two-view relative pose estimation by exploiting the affine transformation between feature points and we demonstrate efficient solvers for these cases. It is shown, that under the planar motion assumption or with knowledge of a vertical direction, a single affine correspondence is sufficient to recover the relative camera pose. The four cases considered are two-view planar relative motion for calibrated cameras as a closed-form and a least-squares solution, a closed-form solution for unknown focal length and the case of a known vertical direction. These algorithms can be used efficiently for outlier detection within a RANSAC loop and for initial motion estimation. All the methods are evaluated on both synthetic data and real-world datasets from the KITTI benchmark. The experimental results demonstrate that our methods outperform comparable state-of-the-art methods in accuracy with the benefit of a reduced number of needed RANSAC iterations.