Abstract:Retrieval-augmented generation (RAG) is a powerful technique that enhances downstream task execution by retrieving additional information, such as knowledge, skills, and tools from external sources. Graph, by its intrinsic "nodes connected by edges" nature, encodes massive heterogeneous and relational information, making it a golden resource for RAG in tremendous real-world applications. As a result, we have recently witnessed increasing attention on equipping RAG with Graph, i.e., GraphRAG. However, unlike conventional RAG, where the retriever, generator, and external data sources can be uniformly designed in the neural-embedding space, the uniqueness of graph-structured data, such as diverse-formatted and domain-specific relational knowledge, poses unique and significant challenges when designing GraphRAG for different domains. Given the broad applicability, the associated design challenges, and the recent surge in GraphRAG, a systematic and up-to-date survey of its key concepts and techniques is urgently desired. Following this motivation, we present a comprehensive and up-to-date survey on GraphRAG. Our survey first proposes a holistic GraphRAG framework by defining its key components, including query processor, retriever, organizer, generator, and data source. Furthermore, recognizing that graphs in different domains exhibit distinct relational patterns and require dedicated designs, we review GraphRAG techniques uniquely tailored to each domain. Finally, we discuss research challenges and brainstorm directions to inspire cross-disciplinary opportunities. Our survey repository is publicly maintained at https://github.com/Graph-RAG/GraphRAG/.
Abstract:Latent representation alignment has become a foundational technique for constructing multimodal large language models (MLLM) by mapping embeddings from different modalities into a shared space, often aligned with the embedding space of large language models (LLMs) to enable effective cross-modal understanding. While preliminary protein-focused MLLMs have emerged, they have predominantly relied on heuristic approaches, lacking a fundamental understanding of optimal alignment practices across representations. In this study, we explore the alignment of multimodal representations between LLMs and Geometric Deep Models (GDMs) in the protein domain. We comprehensively evaluate three state-of-the-art LLMs (Gemma2-2B, LLaMa3.1-8B, and LLaMa3.1-70B) with four protein-specialized GDMs (GearNet, GVP, ScanNet, GAT). Our work examines alignment factors from both model and protein perspectives, identifying challenges in current alignment methodologies and proposing strategies to improve the alignment process. Our key findings reveal that GDMs incorporating both graph and 3D structural information align better with LLMs, larger LLMs demonstrate improved alignment capabilities, and protein rarity significantly impacts alignment performance. We also find that increasing GDM embedding dimensions, using two-layer projection heads, and fine-tuning LLMs on protein-specific data substantially enhance alignment quality. These strategies offer potential enhancements to the performance of protein-related multimodal models. Our code and data are available at https://github.com/Tizzzzy/LLM-GDM-alignment.
Abstract:Unsupervised Anomalous Sound Detection (ASD) aims to design a generalizable method that can be used to detect anomalies when only normal sounds are given. In this paper, Anomalous Sound Detection based on Diffusion Models (ASD-Diffusion) is proposed for ASD in real-world factories. In our pipeline, the anomalies in acoustic features are reconstructed from their noisy corrupted features into their approximate normal pattern. Secondly, a post-processing anomalies filter algorithm is proposed to detect anomalies that exhibit significant deviation from the original input after reconstruction. Furthermore, denoising diffusion implicit model is introduced to accelerate the inference speed by a longer sampling interval of the denoising process. The proposed method is innovative in the application of diffusion models as a new scheme. Experimental results on the development set of DCASE 2023 challenge task 2 outperform the baseline by 7.75%, demonstrating the effectiveness of the proposed method.
Abstract:State-of-the-art (SOTA) video denoising methods employ multi-frame simultaneous denoising mechanisms, resulting in significant delays (e.g., 16 frames), making them impractical for real-time cameras. To overcome this limitation, we propose a multi-fusion gated recurrent Transformer network (GRTN) that achieves SOTA denoising performance with only a single-frame delay. Specifically, the spatial denoising module extracts features from the current frame, while the reset gate selects relevant information from the previous frame and fuses it with current frame features via the temporal denoising module. The update gate then further blends this result with the previous frame features, and the reconstruction module integrates it with the current frame. To robustly compute attention for noisy features, we propose a residual simplified Swin Transformer with Euclidean distance (RSSTE) in the spatial and temporal denoising modules. Comparative objective and subjective results show that our GRTN achieves denoising performance comparable to SOTA multi-frame delay networks, with only a single-frame delay.
Abstract:Large Language Models (LLMs) have demonstrated remarkable performance across various natural language processing tasks. Recently, several LLMs-based pipelines have been developed to enhance learning on graphs with text attributes, showcasing promising performance. However, graphs are well-known to be susceptible to adversarial attacks and it remains unclear whether LLMs exhibit robustness in learning on graphs. To address this gap, our work aims to explore the potential of LLMs in the context of adversarial attacks on graphs. Specifically, we investigate the robustness against graph structural and textual perturbations in terms of two dimensions: LLMs-as-Enhancers and LLMs-as-Predictors. Through extensive experiments, we find that, compared to shallow models, both LLMs-as-Enhancers and LLMs-as-Predictors offer superior robustness against structural and textual attacks.Based on these findings, we carried out additional analyses to investigate the underlying causes. Furthermore, we have made our benchmark library openly available to facilitate quick and fair evaluations, and to encourage ongoing innovative research in this field.
Abstract:Graph neural networks (GNNs) have exhibited remarkable performance under the assumption that test data comes from the same distribution of training data. However, in real-world scenarios, this assumption may not always be valid. Consequently, there is a growing focus on exploring the Out-of-Distribution (OOD) problem in the context of graphs. Most existing efforts have primarily concentrated on improving graph OOD generalization from two \textbf{model-agnostic} perspectives: data-driven methods and strategy-based learning. However, there has been limited attention dedicated to investigating the impact of well-known \textbf{GNN model architectures} on graph OOD generalization, which is orthogonal to existing research. In this work, we provide the first comprehensive investigation of OOD generalization on graphs from an architecture perspective, by examining the common building blocks of modern GNNs. Through extensive experiments, we reveal that both the graph self-attention mechanism and the decoupled architecture contribute positively to graph OOD generalization. In contrast, we observe that the linear classification layer tends to compromise graph OOD generalization capability. Furthermore, we provide in-depth theoretical insights and discussions to underpin these discoveries. These insights have empowered us to develop a novel GNN backbone model, DGAT, designed to harness the robust properties of both graph self-attention mechanism and the decoupled architecture. Extensive experimental results demonstrate the effectiveness of our model under graph OOD, exhibiting substantial and consistent enhancements across various training strategies.
Abstract:With the development of new Internet services such as computation-intensive and delay-sensitive tasks, the traditional "Best Effort" network transmission mode has been greatly challenged. The network system is urgently required to provide end-to-end transmission determinacy and computing determinacy for new applications to ensure the safe and efficient operation of services. Based on the research of the convergence of computing and networking, a new network paradigm named deterministic computing power networking (Det-CPN) is proposed. In this article, we firstly introduce the research advance of computing power networking. And then the motivations and scenarios of Det-CPN are analyzed. Following that, we present the system architecture, technological capabilities, workflow as well as key technologies for Det-CPN. Finally, the challenges and future trends of Det-CPN are analyzed and discussed.
Abstract:This study applies Activity Theory and investigates the attitudes and contradictions of 67 English as a foreign language (EFL) students from four Hong Kong secondary schools towards machine-in-the-loop writing, where artificial intelligence (AI) suggests ideas during composition. Students answered an open-ended question about their feelings on writing with AI. Results revealed mostly positive attitudes, with some negative or mixed feelings. From a thematic analysis, contradictions or points of tension between students and AI stemmed from AI inadequacies, students' balancing enthusiasm with preference, and their striving for language autonomy. The research highlights the benefits and challenges of implementing machine-in-the-loop writing in EFL classrooms, suggesting educators align activity goals with students' values, language abilities, and AI capabilities to enhance students' activity systems.
Abstract:ChatGPT is a state-of-the-art (SOTA) chatbot. Although it has potential to support English as a foreign language (EFL) students' writing, to effectively collaborate with it, a student must learn to engineer prompts, that is, the skill of crafting appropriate instructions so that ChatGPT produces desired outputs. However, writing an appropriate prompt for ChatGPT is not straightforward for non-technical users who suffer a trial-and-error process. This paper examines the content of EFL students' ChatGPT prompts when completing a writing task and explores patterns in the quality and quantity of the prompts. The data come from iPad screen recordings of secondary school EFL students who used ChatGPT and other SOTA chatbots for the first time to complete the same writing task. The paper presents a case study of four distinct pathways that illustrate the trial-and-error process and show different combinations of prompt content and quantity. The cases contribute evidence for the need to provide prompt engineering education in the context of the EFL writing classroom, if students are to move beyond an individual trial-and-error process, learning a greater variety of prompt content and more sophisticated prompts to support their writing.
Abstract:This study applies Activity Theory to investigate how English as a foreign language (EFL) students prompt generative artificial intelligence (AI) tools during short story writing. Sixty-seven Hong Kong secondary school students created generative-AI tools using open-source language models and wrote short stories with them. The study collected and analyzed the students' generative-AI tools, short stories, and written reflections on their conditions or purposes for prompting. The research identified three main themes regarding the purposes for which students prompt generative-AI tools during short story writing: a lack of awareness of purposes, overcoming writer's block, and developing, expanding, and improving the story. The study also identified common characteristics of students' activity systems, including the sophistication of their generative-AI tools, the quality of their stories, and their school's overall academic achievement level, for their prompting of generative-AI tools for the three purposes during short story writing. The study's findings suggest that teachers should be aware of students' purposes for prompting generative-AI tools to provide tailored instructions and scaffolded guidance. The findings may also help designers provide differentiated instructions for users at various levels of story development when using a generative-AI tool.