Abstract:State-of-the-art (SOTA) video denoising methods employ multi-frame simultaneous denoising mechanisms, resulting in significant delays (e.g., 16 frames), making them impractical for real-time cameras. To overcome this limitation, we propose a multi-fusion gated recurrent Transformer network (GRTN) that achieves SOTA denoising performance with only a single-frame delay. Specifically, the spatial denoising module extracts features from the current frame, while the reset gate selects relevant information from the previous frame and fuses it with current frame features via the temporal denoising module. The update gate then further blends this result with the previous frame features, and the reconstruction module integrates it with the current frame. To robustly compute attention for noisy features, we propose a residual simplified Swin Transformer with Euclidean distance (RSSTE) in the spatial and temporal denoising modules. Comparative objective and subjective results show that our GRTN achieves denoising performance comparable to SOTA multi-frame delay networks, with only a single-frame delay.
Abstract:We propose a novel approach to Graduated Non-Convexity (GNC) and demonstrate its efficacy through its application in robust pose graph optimization, a key component in SLAM backends. Traditional GNC methods often rely on heuristic methods for GNC schedule, updating control parameter {\mu} for escalating the non-convexity. In contrast, our approach leverages the properties of convex functions and convex optimization to identify the boundary points beyond which convexity is no longer guaranteed, thereby eliminating redundant optimization steps in existing methodologies and enhancing both speed and robustness. We show that our method outperforms the state-of-the-art method in terms of speed and accuracy when used for robust back-end pose graph optimization via GNC. Our work builds upon and enhances the open-source riSAM framework. Our implementation can be accessed from: https://github.com/SNU-DLLAB/EGNC-PGO
Abstract:We present a novel approach to robust pose graph optimization based on Graduated Non-Convexity (GNC). Unlike traditional GNC-based methods, the proposed approach employs an adaptive shape function using B-spline to optimize the shape of the robust kernel. This aims to reduce GNC iterations, boosting computational speed without compromising accuracy. When integrated with the open-source riSAM algorithm, the method demonstrates enhanced efficiency across diverse datasets. Accompanying open-source code aims to encourage further research in this area. https://github.com/SNU-DLLAB/AGNC-PGO
Abstract:Current video denoising methods perform temporal fusion by designing convolutional neural networks (CNN) or combine spatial denoising with temporal fusion into basic recurrent neural networks (RNNs). However, there have not yet been works which adapt gated recurrent unit (GRU) mechanisms for video denoising. In this letter, we propose a new video denoising model based on GRU, namely GRU-VD. First, the reset gate is employed to mark the content related to the current frame in the previous frame output. Then the hidden activation works as an initial spatial-temporal denoising with the help from the marked relevant content. Finally, the update gate recursively fuses the initial denoised result with previous frame output to further increase accuracy. To handle various light conditions adaptively, the noise standard deviation of the current frame is also fed to these three modules. A weighted loss is adopted to regulate initial denoising and final fusion at the same time. The experimental results show that the GRU-VD network not only can achieve better quality than state of the arts objectively and subjectively, but also can obtain satisfied subjective quality on real video.