Abstract:Open-ended short-answer questions (SAGs) have been widely recognized as a powerful tool for providing deeper insights into learners' responses in the context of learning analytics (LA). However, SAGs often present challenges in practice due to the high grading workload and concerns about inconsistent assessments. With recent advancements in natural language processing (NLP), automatic short-answer grading (ASAG) offers a promising solution to these challenges. Despite this, current ASAG algorithms are often limited in generalizability and tend to be tailored to specific questions. In this paper, we propose a unified multi-agent ASAG framework, GradeOpt, which leverages large language models (LLMs) as graders for SAGs. More importantly, GradeOpt incorporates two additional LLM-based agents - the reflector and the refiner - into the multi-agent system. This enables GradeOpt to automatically optimize the original grading guidelines by performing self-reflection on its errors. Through experiments on a challenging ASAG task, namely the grading of pedagogical content knowledge (PCK) and content knowledge (CK) questions, GradeOpt demonstrates superior performance in grading accuracy and behavior alignment with human graders compared to representative baselines. Finally, comprehensive ablation studies confirm the effectiveness of the individual components designed in GradeOpt.
Abstract:Denoising Diffusion Probabilistic Models (DDPMs) represent a contemporary class of generative models with exceptional qualities in both synthesis and maximizing the data likelihood. These models work by traversing a forward Markov Chain where data is perturbed, followed by a reverse process where a neural network learns to undo the perturbations and recover the original data. There have been increasing efforts exploring the applications of DDPMs in the graph domain. However, most of them have focused on the generative perspective. In this paper, we aim to build a novel generative model for link prediction. In particular, we treat link prediction between a pair of nodes as a conditional likelihood estimation of its enclosing sub-graph. With a dedicated design to decompose the likelihood estimation process via the Bayesian formula, we are able to separate the estimation of sub-graph structure and its node features. Such designs allow our model to simultaneously enjoy the advantages of inductive learning and the strong generalization capability. Remarkably, comprehensive experiments across various datasets validate that our proposed method presents numerous advantages: (1) transferability across datasets without retraining, (2) promising generalization on limited training data, and (3) robustness against graph adversarial attacks.
Abstract:Knowledge Graph Completion (KGC) attempts to predict missing facts in a Knowledge Graph (KG). Recently, there's been an increased focus on designing KGC methods that can excel in the {\it inductive setting}, where a portion or all of the entities and relations seen in inference are unobserved during training. Numerous benchmark datasets have been proposed for inductive KGC, all of which are subsets of existing KGs used for transductive KGC. However, we find that the current procedure for constructing inductive KGC datasets inadvertently creates a shortcut that can be exploited even while disregarding the relational information. Specifically, we observe that the Personalized PageRank (PPR) score can achieve strong or near SOTA performance on most inductive datasets. In this paper, we study the root cause of this problem. Using these insights, we propose an alternative strategy for constructing inductive KGC datasets that helps mitigate the PPR shortcut. We then benchmark multiple popular methods using the newly constructed datasets and analyze their performance. The new benchmark datasets help promote a better understanding of the capabilities and challenges of inductive KGC by removing any shortcuts that obfuscate performance.
Abstract:Recently, multiple models proposed for link prediction (LP) demonstrate impressive results on benchmark datasets. However, many popular benchmark datasets often assume that dataset samples are drawn from the same distribution (i.e., IID samples). In real-world situations, this assumption is often incorrect; since uncontrolled factors may lead train and test samples to come from separate distributions. To tackle the distribution shift problem, recent work focuses on creating datasets that feature distribution shifts and designing generalization methods that perform well on the new data. However, those studies only consider distribution shifts that affect {\it node-} and {\it graph-level} tasks, thus ignoring link-level tasks. Furthermore, relatively few LP generalization methods exist. To bridge this gap, we introduce a set of LP-specific data splits which utilizes structural properties to induce a controlled distribution shift. We verify the shift's effect empirically through evaluation of different SOTA LP methods and subsequently couple these methods with generalization techniques. Interestingly, LP-specific methods frequently generalize poorly relative to heuristics or basic GNN methods. Finally, this work provides analysis to uncover insights for enhancing LP generalization. Our code is available at: \href{https://github.com/revolins/LPStructGen}{https://github.com/revolins/LPStructGen}
Abstract:Session-based recommendation has gained increasing attention in recent years, with its aim to offer tailored suggestions based on users' historical behaviors within sessions. To advance this field, a variety of methods have been developed, with ID-based approaches typically demonstrating promising performance. However, these methods often face challenges with long-tail items and overlook other rich forms of information, notably valuable textual semantic information. To integrate text information, various methods have been introduced, mostly following a naive fusion framework. Surprisingly, we observe that fusing these two modalities does not consistently outperform the best single modality by following the naive fusion framework. Further investigation reveals an potential imbalance issue in naive fusion, where the ID dominates and text modality is undertrained. This suggests that the unexpected observation may stem from naive fusion's failure to effectively balance the two modalities, often over-relying on the stronger ID modality. This insight suggests that naive fusion might not be as effective in combining ID and text as previously expected. To address this, we propose a novel alternative training strategy AlterRec. It separates the training of ID and text, thereby avoiding the imbalance issue seen in naive fusion. Additionally, AlterRec designs a novel strategy to facilitate the interaction between the two modalities, enabling them to mutually learn from each other and integrate the text more effectively. Comprehensive experiments demonstrate the effectiveness of AlterRec in session-based recommendation. The implementation is available at https://github.com/Juanhui28/AlterRec.
Abstract:Link prediction, which aims to forecast unseen connections in graphs, is a fundamental task in graph machine learning. Heuristic methods, leveraging a range of different pairwise measures such as common neighbors and shortest paths, often rival the performance of vanilla Graph Neural Networks (GNNs). Therefore, recent advancements in GNNs for link prediction (GNN4LP) have primarily focused on integrating one or a few types of pairwise information. In this work, we reveal that different node pairs within the same dataset necessitate varied pairwise information for accurate prediction and models that only apply the same pairwise information uniformly could achieve suboptimal performance. As a result, we propose a simple mixture of experts model Link-MoE for link prediction. Link-MoE utilizes various GNNs as experts and strategically selects the appropriate expert for each node pair based on various types of pairwise information. Experimental results across diverse real-world datasets demonstrate substantial performance improvement from Link-MoE. Notably, Link-MoE achieves a relative improvement of 18.82\% on the MRR metric for the Pubmed dataset and 10.8\% on the Hits@100 metric for the ogbl-ppa dataset, compared to the best baselines.
Abstract:Knowledge graph completion (KGC) aims to predict unseen edges in knowledge graphs (KGs), resulting in the discovery of new facts. A new class of methods have been proposed to tackle this problem by aggregating path information. These methods have shown tremendous ability in the task of KGC. However they are plagued by efficiency issues. Though there are a few recent attempts to address this through learnable path pruning, they often sacrifice the performance to gain efficiency. In this work, we identify two intrinsic limitations of these methods that affect the efficiency and representation quality. To address the limitations, we introduce a new method, TAGNet, which is able to efficiently propagate information. This is achieved by only aggregating paths in a fixed window for each source-target pair. We demonstrate that the complexity of TAGNet is independent of the number of layers. Extensive experiments demonstrate that TAGNet can cut down on the number of propagated messages by as much as 90% while achieving competitive performance on multiple KG datasets. The code is available at https://github.com/HarryShomer/TAGNet.
Abstract:Link prediction is a common task on graph-structured data that has seen applications in a variety of domains. Classically, hand-crafted heuristics were used for this task. Heuristic measures are chosen such that they correlate well with the underlying factors related to link formation. In recent years, a new class of methods has emerged that combines the advantages of message-passing neural networks (MPNN) and heuristics methods. These methods perform predictions by using the output of an MPNN in conjunction with a "pairwise encoding" that captures the relationship between nodes in the candidate link. They have been shown to achieve strong performance on numerous datasets. However, current pairwise encodings often contain a strong inductive bias, using the same underlying factors to classify all links. This limits the ability of existing methods to learn how to properly classify a variety of different links that may form from different factors. To address this limitation, we propose a new method, LPFormer, which attempts to adaptively learn the pairwise encodings for each link. LPFormer models the link factors via an attention module that learns the pairwise encoding that exists between nodes by modeling multiple factors integral to link prediction. Extensive experiments demonstrate that LPFormer can achieve SOTA performance on numerous datasets while maintaining efficiency.
Abstract:Link prediction, a fundamental task on graphs, has proven indispensable in various applications, e.g., friend recommendation, protein analysis, and drug interaction prediction. However, since datasets span a multitude of domains, they could have distinct underlying mechanisms of link formation. Evidence in existing literature underscores the absence of a universally best algorithm suitable for all datasets. In this paper, we endeavor to explore principles of link prediction across diverse datasets from a data-centric perspective. We recognize three fundamental factors critical to link prediction: local structural proximity, global structural proximity, and feature proximity. We then unearth relationships among those factors where (i) global structural proximity only shows effectiveness when local structural proximity is deficient. (ii) The incompatibility can be found between feature and structural proximity. Such incompatibility leads to GNNs for Link Prediction (GNN4LP) consistently underperforming on edges where the feature proximity factor dominates. Inspired by these new insights from a data perspective, we offer practical instruction for GNN4LP model design and guidelines for selecting appropriate benchmark datasets for more comprehensive evaluations.
Abstract:Link prediction attempts to predict whether an unseen edge exists based on only a portion of edges of a graph. A flurry of methods have been introduced in recent years that attempt to make use of graph neural networks (GNNs) for this task. Furthermore, new and diverse datasets have also been created to better evaluate the effectiveness of these new models. However, multiple pitfalls currently exist that hinder our ability to properly evaluate these new methods. These pitfalls mainly include: (1) Lower than actual performance on multiple baselines, (2) A lack of a unified data split and evaluation metric on some datasets, and (3) An unrealistic evaluation setting that uses easy negative samples. To overcome these challenges, we first conduct a fair comparison across prominent methods and datasets, utilizing the same dataset and hyperparameter search settings. We then create a more practical evaluation setting based on a Heuristic Related Sampling Technique (HeaRT), which samples hard negative samples via multiple heuristics. The new evaluation setting helps promote new challenges and opportunities in link prediction by aligning the evaluation with real-world situations. Our implementation and data are available at https://github.com/Juanhui28/HeaRT