Abstract:The emergence of intelligent applications and recent advances in the fields of computing and networks are driving the development of computing and networks convergence (CNC) system. However, existing researches failed to achieve comprehensive scheduling optimization of computing and network resources. This shortfall results in some requirements of computing requests unable to be guaranteed in an end-to-end service pattern, negatively impacting the development of CNC systems. In this article, we propose a distributed cooperative routing framework for the CNC system to ensure the deadline requirements and minimize the computation cost of requests. The framework includes trading plane, management plane, control plane and forwarding plane. The cross-plane cooperative end-to-end routing schemes consider both computation efficiency of heterogeneous servers and the network congestion degrees while making routing plan, thereby determining where to execute requests and corresponding routing paths. Simulations results substantiates the performance of our routing schemes in scheduling computing requests in the CNC system.
Abstract:With the development of new Internet services such as computation-intensive and delay-sensitive tasks, the traditional "Best Effort" network transmission mode has been greatly challenged. The network system is urgently required to provide end-to-end transmission determinacy and computing determinacy for new applications to ensure the safe and efficient operation of services. Based on the research of the convergence of computing and networking, a new network paradigm named deterministic computing power networking (Det-CPN) is proposed. In this article, we firstly introduce the research advance of computing power networking. And then the motivations and scenarios of Det-CPN are analyzed. Following that, we present the system architecture, technological capabilities, workflow as well as key technologies for Det-CPN. Finally, the challenges and future trends of Det-CPN are analyzed and discussed.