Abstract:Multimodal Large Language Models (MLLMs) have shown remarkable progress in visual understanding, yet they suffer from a critical limitation: structural blindness. Even state-of-the-art models fail to capture topology and symbolic logic in engineering schematics, as their pixel-driven paradigm discards the explicit vector-defined relations needed for reasoning. To overcome this, we propose a Vector-to-Graph (V2G) pipeline that converts CAD diagrams into property graphs where nodes represent components and edges encode connectivity, making structural dependencies explicit and machine-auditable. On a diagnostic benchmark of electrical compliance checks, V2G yields large accuracy gains across all error categories, while leading MLLMs remain near chance level. These results highlight the systemic inadequacy of pixel-based methods and demonstrate that structure-aware representations provide a reliable path toward practical deployment of multimodal AI in engineering domains. To facilitate further research, we release our benchmark and implementation at https://github.com/gm-embodied/V2G-Audit.
Abstract:Vision-Language-Action (VLA) models have recently achieved remarkable progress in robotic perception and control, yet most existing approaches primarily rely on VLM trained using 2D images, which limits their spatial understanding and action grounding in complex 3D environments. To address this limitation, we propose a novel framework that integrates depth estimation into VLA models to enrich 3D feature representations. Specifically, we employ a depth estimation baseline called VGGT to extract geometry-aware 3D cues from standard RGB inputs, enabling efficient utilization of existing large-scale 2D datasets while implicitly recovering 3D structural information. To further enhance the reliability of these depth-derived features, we introduce a new module called action assistant, which constrains the learned 3D representations with action priors and ensures their consistency with downstream control tasks. By fusing the enhanced 3D features with conventional 2D visual tokens, our approach significantly improves the generalization ability and robustness of VLA models. Experimental results demonstrate that the proposed method not only strengthens perception in geometrically ambiguous scenarios but also leads to superior action prediction accuracy. This work highlights the potential of depth-driven data augmentation and auxiliary expert supervision for bridging the gap between 2D observations and 3D-aware decision-making in robotic systems.
Abstract:Emerging network paradigms and applications increasingly rely on federated learning (FL) to enable collaborative intelligence while preserving privacy. However, the sustainability of such collaborative environments hinges on a fair and stable payoff allocation mechanism. Focusing on coalition stability, this paper introduces a payoff allocation framework based on the least core (LC) concept. Unlike traditional methods, the LC prioritizes the cohesion of the federation by minimizing the maximum dissatisfaction among all potential subgroups, ensuring that no participant has an incentive to break away. To adapt this game-theoretic concept to practical, large-scale networks, we propose a streamlined implementation with a stack-based pruning algorithm, effectively balancing computational efficiency with allocation precision. Case studies in federated intrusion detection demonstrate that our mechanism correctly identifies pivotal contributors and strategic alliances. The results confirm that the practical LC framework promotes stable collaboration and fosters a sustainable FL ecosystem.
Abstract:Diffusion strategies have advanced visual motor control by progressively denoising high-dimensional action sequences, providing a promising method for robot manipulation. However, as task complexity increases, the success rate of existing baseline models decreases considerably. Analysis indicates that current diffusion strategies are confronted with two limitations. First, these strategies only rely on short-term observations as conditions. Second, the training objective remains limited to a single denoising loss, which leads to error accumulation and causes grasping deviations. To address these limitations, this paper proposes Foresight-Conditioned Diffusion (ForeDiffusion), by injecting the predicted future view representation into the diffusion process. As a result, the policy is guided to be forward-looking, enabling it to correct trajectory deviations. Following this design, ForeDiffusion employs a dual loss mechanism, combining the traditional denoising loss and the consistency loss of future observations, to achieve the unified optimization. Extensive evaluation on the Adroit suite and the MetaWorld benchmark demonstrates that ForeDiffusion achieves an average success rate of 80% for the overall task, significantly outperforming the existing mainstream diffusion methods by 23% in complex tasks, while maintaining more stable performance across the entire tasks.
Abstract:This works presents an encoder-only transformer built with minimum layers for intrusion detection in the domain of Connected and Autonomous Vehicles using Federated Learning.




Abstract:Recent advancements in implicit 3D reconstruction methods, e.g., neural rendering fields and Gaussian splatting, have primarily focused on novel view synthesis of static or dynamic objects with continuous motion states. However, these approaches struggle to efficiently model a human-interactive object with n movable parts, requiring 2^n separate models to represent all discrete states. To overcome this limitation, we propose Inter3D, a new benchmark and approach for novel state synthesis of human-interactive objects. We introduce a self-collected dataset featuring commonly encountered interactive objects and a new evaluation pipeline, where only individual part states are observed during training, while part combination states remain unseen. We also propose a strong baseline approach that leverages Space Discrepancy Tensors to efficiently modelling all states of an object. To alleviate the impractical constraints on camera trajectories across training states, we propose a Mutual State Regularization mechanism to enhance the spatial density consistency of movable parts. In addition, we explore two occupancy grid sampling strategies to facilitate training efficiency. We conduct extensive experiments on the proposed benchmark, showcasing the challenges of the task and the superiority of our approach.
Abstract:Edge computing has emerged as a key paradigm for deploying deep learning-based object detection in time-sensitive scenarios. However, existing edge detection methods face challenges: 1) difficulty balancing detection precision with lightweight models, 2) limited adaptability of generalized deployment designs, and 3) insufficient real-world validation. To address these issues, we propose the Edge Detection Toolbox (ED-TOOLBOX), which utilizes generalizable plug-and-play components to adapt object detection models for edge environments. Specifically, we introduce a lightweight Reparameterized Dynamic Convolutional Network (Rep-DConvNet) featuring weighted multi-shape convolutional branches to enhance detection performance. Additionally, we design a Sparse Cross-Attention (SC-A) network with a localized-mapping-assisted self-attention mechanism, enabling a well-crafted joint module for adaptive feature transfer. For real-world applications, we incorporate an Efficient Head into the YOLO framework to accelerate edge model optimization. To demonstrate practical impact, we identify a gap in helmet detection -- overlooking band fastening, a critical safety factor -- and create the Helmet Band Detection Dataset (HBDD). Using ED-TOOLBOX-optimized models, we address this real-world task. Extensive experiments validate the effectiveness of ED-TOOLBOX, with edge detection models outperforming six state-of-the-art methods in visual surveillance simulations, achieving real-time and accurate performance. These results highlight ED-TOOLBOX as a superior solution for edge object detection.
Abstract:As the volume of image data grows, data-oriented cloud computing in Internet of Video Things (IoVT) systems encounters latency issues. Task-oriented edge computing addresses this by shifting data analysis to the edge. However, limited computational power of edge devices poses challenges for executing visual tasks. Existing methods struggle to balance high model performance with low resource consumption; lightweight neural networks often underperform, while device-specific models designed by Neural Architecture Search (NAS) fail to adapt to heterogeneous devices. For these issues, we propose a novel co-design framework to optimize neural network architecture and deployment strategies during inference for high-throughput. Specifically, it implements a dynamic model structure based on re-parameterization, coupled with a Roofline-based model partitioning strategy to enhance the computational performance of edge devices. We also employ a multi-objective co-optimization approach to balance throughput and accuracy. Additionally, we derive mathematical consistency and convergence of partitioned models. Experimental results demonstrate significant improvements in throughput (12.05\% on MNIST, 18.83\% on ImageNet) and superior classification accuracy compared to baseline algorithms. Our method consistently achieves stable performance across different devices, underscoring its adaptability. Simulated experiments further confirm its efficacy in high-accuracy, real-time detection for small objects in IoVT systems.




Abstract:The emergence of intelligent applications and recent advances in the fields of computing and networks are driving the development of computing and networks convergence (CNC) system. However, existing researches failed to achieve comprehensive scheduling optimization of computing and network resources. This shortfall results in some requirements of computing requests unable to be guaranteed in an end-to-end service pattern, negatively impacting the development of CNC systems. In this article, we propose a distributed cooperative routing framework for the CNC system to ensure the deadline requirements and minimize the computation cost of requests. The framework includes trading plane, management plane, control plane and forwarding plane. The cross-plane cooperative end-to-end routing schemes consider both computation efficiency of heterogeneous servers and the network congestion degrees while making routing plan, thereby determining where to execute requests and corresponding routing paths. Simulations results substantiates the performance of our routing schemes in scheduling computing requests in the CNC system.
Abstract:Traditional Recurrent Neural Network (RNN) architectures, such as LSTM and GRU, have historically held prominence in time series tasks. However, they have recently seen a decline in their dominant position across various time series tasks. As a result, recent advancements in time series forecasting have seen a notable shift away from RNNs towards alternative architectures such as Transformers, MLPs, and CNNs. To go beyond the limitations of traditional RNNs, we design an efficient RNN-based model for time series tasks, named RWKV-TS, with three distinctive features: (i) A novel RNN architecture characterized by $O(L)$ time complexity and memory usage. (ii) An enhanced ability to capture long-term sequence information compared to traditional RNNs. (iii) High computational efficiency coupled with the capacity to scale up effectively. Through extensive experimentation, our proposed RWKV-TS model demonstrates competitive performance when compared to state-of-the-art Transformer-based or CNN-based models. Notably, RWKV-TS exhibits not only comparable performance but also demonstrates reduced latency and memory utilization. The success of RWKV-TS encourages further exploration and innovation in leveraging RNN-based approaches within the domain of Time Series. The combination of competitive performance, low latency, and efficient memory usage positions RWKV-TS as a promising avenue for future research in time series tasks. Code is available at:\href{https://github.com/howard-hou/RWKV-TS}{ https://github.com/howard-hou/RWKV-TS}