Abstract:Edge computing has emerged as a key paradigm for deploying deep learning-based object detection in time-sensitive scenarios. However, existing edge detection methods face challenges: 1) difficulty balancing detection precision with lightweight models, 2) limited adaptability of generalized deployment designs, and 3) insufficient real-world validation. To address these issues, we propose the Edge Detection Toolbox (ED-TOOLBOX), which utilizes generalizable plug-and-play components to adapt object detection models for edge environments. Specifically, we introduce a lightweight Reparameterized Dynamic Convolutional Network (Rep-DConvNet) featuring weighted multi-shape convolutional branches to enhance detection performance. Additionally, we design a Sparse Cross-Attention (SC-A) network with a localized-mapping-assisted self-attention mechanism, enabling a well-crafted joint module for adaptive feature transfer. For real-world applications, we incorporate an Efficient Head into the YOLO framework to accelerate edge model optimization. To demonstrate practical impact, we identify a gap in helmet detection -- overlooking band fastening, a critical safety factor -- and create the Helmet Band Detection Dataset (HBDD). Using ED-TOOLBOX-optimized models, we address this real-world task. Extensive experiments validate the effectiveness of ED-TOOLBOX, with edge detection models outperforming six state-of-the-art methods in visual surveillance simulations, achieving real-time and accurate performance. These results highlight ED-TOOLBOX as a superior solution for edge object detection.
Abstract:As the volume of image data grows, data-oriented cloud computing in Internet of Video Things (IoVT) systems encounters latency issues. Task-oriented edge computing addresses this by shifting data analysis to the edge. However, limited computational power of edge devices poses challenges for executing visual tasks. Existing methods struggle to balance high model performance with low resource consumption; lightweight neural networks often underperform, while device-specific models designed by Neural Architecture Search (NAS) fail to adapt to heterogeneous devices. For these issues, we propose a novel co-design framework to optimize neural network architecture and deployment strategies during inference for high-throughput. Specifically, it implements a dynamic model structure based on re-parameterization, coupled with a Roofline-based model partitioning strategy to enhance the computational performance of edge devices. We also employ a multi-objective co-optimization approach to balance throughput and accuracy. Additionally, we derive mathematical consistency and convergence of partitioned models. Experimental results demonstrate significant improvements in throughput (12.05\% on MNIST, 18.83\% on ImageNet) and superior classification accuracy compared to baseline algorithms. Our method consistently achieves stable performance across different devices, underscoring its adaptability. Simulated experiments further confirm its efficacy in high-accuracy, real-time detection for small objects in IoVT systems.
Abstract:The emergence of intelligent applications and recent advances in the fields of computing and networks are driving the development of computing and networks convergence (CNC) system. However, existing researches failed to achieve comprehensive scheduling optimization of computing and network resources. This shortfall results in some requirements of computing requests unable to be guaranteed in an end-to-end service pattern, negatively impacting the development of CNC systems. In this article, we propose a distributed cooperative routing framework for the CNC system to ensure the deadline requirements and minimize the computation cost of requests. The framework includes trading plane, management plane, control plane and forwarding plane. The cross-plane cooperative end-to-end routing schemes consider both computation efficiency of heterogeneous servers and the network congestion degrees while making routing plan, thereby determining where to execute requests and corresponding routing paths. Simulations results substantiates the performance of our routing schemes in scheduling computing requests in the CNC system.
Abstract:Traditional Recurrent Neural Network (RNN) architectures, such as LSTM and GRU, have historically held prominence in time series tasks. However, they have recently seen a decline in their dominant position across various time series tasks. As a result, recent advancements in time series forecasting have seen a notable shift away from RNNs towards alternative architectures such as Transformers, MLPs, and CNNs. To go beyond the limitations of traditional RNNs, we design an efficient RNN-based model for time series tasks, named RWKV-TS, with three distinctive features: (i) A novel RNN architecture characterized by $O(L)$ time complexity and memory usage. (ii) An enhanced ability to capture long-term sequence information compared to traditional RNNs. (iii) High computational efficiency coupled with the capacity to scale up effectively. Through extensive experimentation, our proposed RWKV-TS model demonstrates competitive performance when compared to state-of-the-art Transformer-based or CNN-based models. Notably, RWKV-TS exhibits not only comparable performance but also demonstrates reduced latency and memory utilization. The success of RWKV-TS encourages further exploration and innovation in leveraging RNN-based approaches within the domain of Time Series. The combination of competitive performance, low latency, and efficient memory usage positions RWKV-TS as a promising avenue for future research in time series tasks. Code is available at:\href{https://github.com/howard-hou/RWKV-TS}{ https://github.com/howard-hou/RWKV-TS}
Abstract:Intelligent reflecting surface (IRS)-assisted unmanned aerial vehicle (UAV) communications are expected to alleviate the load of ground base stations in a cost-effective way. Existing studies mainly focus on the deployment and resource allocation of a single IRS instead of multiple IRSs, whereas it is extremely challenging for joint multi-IRS multi-user association in UAV communications with constrained reflecting resources and dynamic scenarios. To address the aforementioned challenges, we propose a new optimization algorithm for joint IRS-user association, trajectory optimization of UAVs, successive interference cancellation (SIC) decoding order scheduling and power allocation to maximize system energy efficiency. We first propose an inverse soft-Q learning-based algorithm to optimize multi-IRS multi-user association. Then, SCA and Dinkelbach-based algorithm are leveraged to optimize UAV trajectory followed by the optimization of SIC decoding order scheduling and power allocation. Finally, theoretical analysis and performance results show significant advantages of the designed algorithm in convergence rate and energy efficiency.
Abstract:Completely Automated Public Turing test to tell Computers and Humans Apart, short for CAPTCHA, is an essential and relatively easy way to defend against malicious attacks implemented by bots. The security and usability trade-off limits the use of massive geometric transformations to interfere deep model recognition and deep models even outperformed humans in complex CAPTCHAs. The discovery of adversarial examples provides an ideal solution to the security and usability trade-off by integrating adversarial examples and CAPTCHAs to generate adversarial CAPTCHAs that can fool the deep models. In this paper, we extend the definition of adversarial CAPTCHAs and propose a classification method for adversarial CAPTCHAs. Then we systematically review some commonly used methods to generate adversarial examples and methods that are successfully used to generate adversarial CAPTCHAs. Also, we analyze some defense methods that can be used to defend adversarial CAPTCHAs, indicating potential threats to adversarial CAPTCHAs. Finally, we discuss some possible future research directions for adversarial CAPTCHAs at the end of this paper.
Abstract:Imagine stepping into a virtual world that's as rich, dynamic, and interactive as our physical one. This is the promise of the Metaverse, and it's being brought to life by the transformative power of Generative Artificial Intelligence (AI). This paper offers a comprehensive exploration of how generative AI technologies are shaping the Metaverse, transforming it into a dynamic, immersive, and interactive virtual world. We delve into the applications of text generation models like ChatGPT and GPT-3, which are enhancing conversational interfaces with AI-generated characters. We explore the role of image generation models such as DALL-E and MidJourney in creating visually stunning and diverse content. We also examine the potential of 3D model generation technologies like Point-E and Lumirithmic in creating realistic virtual objects that enrich the Metaverse experience. But the journey doesn't stop there. We also address the challenges and ethical considerations of implementing these technologies in the Metaverse, offering insights into the balance between user control and AI automation. This paper is not just a study, but a guide to the future of the Metaverse, offering readers a roadmap to harnessing the power of generative AI in creating immersive virtual worlds.
Abstract:The emergence of Neural Radiance Fields (NeRF) has promoted the development of synthesized high-fidelity views of the intricate real world. However, it is still a very demanding task to repaint the content in NeRF. In this paper, we propose a novel framework that can take RGB images as input and alter the 3D content in neural scenes. Our work leverages existing diffusion models to guide changes in the designated 3D content. Specifically, we semantically select the target object and a pre-trained diffusion model will guide the NeRF model to generate new 3D objects, which can improve the editability, diversity, and application range of NeRF. Experiment results show that our algorithm is effective for editing 3D objects in NeRF under different text prompts, including editing appearance, shape, and more. We validate our method on both real-world datasets and synthetic-world datasets for these editing tasks. Please visit https://repaintnerf.github.io for a better view of our results.
Abstract:Federated Learning (FL) is a novel distributed machine learning approach to leverage data from Internet of Things (IoT) devices while maintaining data privacy. However, the current FL algorithms face the challenges of non-independent and identically distributed (non-IID) data, which causes high communication costs and model accuracy declines. To address the statistical imbalances in FL, we propose a clustered data sharing framework which spares the partial data from cluster heads to credible associates through device-to-device (D2D) communication. Moreover, aiming at diluting the data skew on nodes, we formulate the joint clustering and data sharing problem based on the privacy-preserving constrained graph. To tackle the serious coupling of decisions on the graph, we devise a distribution-based adaptive clustering algorithm (DACA) basing on three deductive cluster-forming conditions, which ensures the maximum yield of data sharing. The experiments show that the proposed framework facilitates FL on non-IID datasets with better convergence and model accuracy under a limited communication environment.
Abstract:GSM-R is predicted to be obsoleted by 2030, and a suitable successor is needed. Defined by the International Union of Railways (UIC), the Future Railway Mobile Communication System (FRMCS) contains many future use cases with strict requirements. These use cases should ensure regular communication not only in network coverage but also uncovered scenarios. There is still a lack of standards on off-network communication in FRMCS, so this article focuses on off-network communication and intends to provide reference and direction for standardization. We first provide a comprehensive summary and analysis of off-network use cases in FRMCS. Then we give an overview of existing technologies (GSM-R, TETRA, DMR, LTE-V2X, and NR-V2X) that may support off-network communication. In addition, we simulate and evaluate the performance of existing technologies. Simulation results show that it is possible to satisfy the off-network communication requirements in FRMCS with enhancements based on LTE-V2X or NR-V2X. Finally, we give some future research directions to provide insights for industry and academia.