Abstract:We have implemented a multi-stage IDS for CAVs that can be deployed to resourec-constrained environments after hybrid model compression.
Abstract:This work implements a lightweight Transformer model for IDS in the domain of Connected and Autonomous Vehicles
Abstract:This works presents an encoder-only transformer built with minimum layers for intrusion detection in the domain of Connected and Autonomous Vehicles using Federated Learning.
Abstract:Evaluating short-form video content requires moving beyond surface-level quality metrics toward human-aligned, multimodal reasoning. While existing frameworks like VideoScore-2 assess visual and semantic fidelity, they do not capture how specific audiovisual attributes drive real audience engagement. In this work, we propose a data-driven evaluation framework that uses Vision-Language Models (VLMs) to extract unsupervised audiovisual features, clusters them into interpretable factors, and trains a regression-based evaluator to predict engagement on short-form edutainment videos. Our curated YouTube Shorts dataset enables systematic analysis of how VLM-derived features relate to human engagement behavior. Experiments show strong correlations between predicted and actual engagement, demonstrating that our lightweight, feature-based evaluator provides interpretable and scalable assessments compared to traditional metrics (e.g., SSIM, FID). By grounding evaluation in both multimodal feature importance and human-centered engagement signals, our approach advances toward robust and explainable video understanding.




Abstract:Automatic Speech Recognition (ASR) holds immense potential to assist in clinical documentation and patient report generation, particularly in resource-constrained regions. However, deployment is currently hindered by a technical deadlock: a severe "Reality Gap" between laboratory performance and noisy, real-world clinical audio, coupled with strict privacy and resource constraints. We quantify this gap, showing that a robust multilingual model (IndicWav2Vec) degrades to a 40.94% WER on rural clinical data from India, rendering it unusable. To address this, we explore a zero-data-exfiltration framework enabling localized, continual adaptation via Low-Rank Adaptation (LoRA). We conduct a rigorous investigative study of continual learning strategies, characterizing the trade-offs between data-driven and parameter-driven stability. Our results demonstrate that multi-domain Experience Replay (ER) yields the primary performance gains, achieving a 17.1% relative improvement in target WER and reducing catastrophic forgetting by 55% compared to naive adaptation. Furthermore, we observed that standard Elastic Weight Consolidation (EWC) faced numerical stability challenges when applied to LoRA in noisy environments. Our experiments show that a stabilized, linearized formulation effectively controls gradient magnitudes and enables stable convergence. Finally, we verify via a domain-specific spot check that acoustic adaptation is a fundamental prerequisite for usability which cannot be bypassed by language models alone.
Abstract:Vision-Language Models have demonstrated remarkable capabilities in understanding visual content, yet systematic biases in their spatial processing remain largely unexplored. This work identifies and characterizes a systematic spatial attention bias where VLMs consistently prioritize describing left-positioned content before right-positioned content in horizontally concatenated images. Through controlled experiments on image pairs using both open-source and closed-source models, we demonstrate that this bias persists across different architectures, with models describing left-positioned content first in approximately 97% of cases under neutral prompting conditions. Testing on an Arabic-finetuned model reveals that the bias persists despite right-to-left language training, ruling out language reading direction as the primary cause. Investigation of training dataset annotation guidelines from PixMo and Visual Genome reveals no explicit left-first ordering instructions, suggesting the bias is consistent with architectural factors rather than explicit training data instructions. These findings reveal fundamental limitations in how current VLMs process spatial information.
Abstract:Strategic decision-making in Pokémon battles presents a unique testbed for evaluating large language models. Pokémon battles demand reasoning about type matchups, statistical trade-offs, and risk assessment, skills that mirror human strategic thinking. This work examines whether Large Language Models (LLMs) can serve as competent battle agents, capable of both making tactically sound decisions and generating novel, balanced game content. We developed a turn-based Pokémon battle system where LLMs select moves based on battle state rather than pre-programmed logic. The framework captures essential Pokémon mechanics: type effectiveness multipliers, stat-based damage calculations, and multi-Pokémon team management. Through systematic evaluation across multiple model architectures we measured win rates, decision latency, type-alignment accuracy, and token efficiency. These results suggest LLMs can function as dynamic game opponents without domain-specific training, offering a practical alternative to reinforcement learning for turn-based strategic games. The dual capability of tactical reasoning and content creation, positions LLMs as both players and designers, with implications for procedural generation and adaptive difficulty systems in interactive entertainment.
Abstract:Retrieval-Augmented Generation (RAG) grounds large language models (LLMs) in external evidence, but fails when retrieved sources conflict or contain outdated or subjective information. Prior work address these issues independently but lack unified reasoning supervision. We propose a reasoning-trace-augmented RAG framework that adds structured, interpretable reasoning across three stages : (1) document-level adjudication, (2) conflict analysis, and (3) grounded synthesis, producing citation-linked answers or justified refusals. A Conflict-Aware Trust-Score (CATS) pipeline is introduced which evaluates groundedness, factual correctness, refusal accuracy, and conflict-behavior alignment using an LLM-as-a-Judge. Our 539-query reasoning dataset and evaluation pipeline establish a foundation for conflict-aware, interpretable RAG systems. Experimental results demonstrate substantial gains over baselines, most notably with Qwen, where Supervised Fine-Tuning improved End-to-End answer correctness from 0.069 to 0.883 and behavioral adherence from 0.074 to 0.722.




Abstract:Generating long, cohesive video stories with consistent characters is a significant challenge for current text-to-video AI. We introduce a method that approaches video generation in a filmmaker-like manner. Instead of creating a video in one step, our proposed pipeline first uses a large language model to generate a detailed production script. This script guides a text-to-image model in creating consistent visuals for each character, which then serve as anchors for a video generation model to synthesize each scene individually. Our baseline comparisons validate the necessity of this multi-stage decomposition; specifically, we observe that removing the visual anchoring mechanism results in a catastrophic drop in character consistency scores (from 7.99 to 0.55), confirming that visual priors are essential for identity preservation. Furthermore, we analyze cultural disparities in current models, revealing distinct biases in subject consistency and dynamic degree between Indian vs Western-themed generations.


Abstract:Modern generative and diffusion models produce highly realistic images that can mislead human perception and even sophisticated automated detection systems. Most detection methods operate in RGB space and thus analyze only three spectral channels. We propose HSI-Detect, a two-stage pipeline that reconstructs a 31-channel hyperspectral image from a standard RGB input and performs detection in the hyperspectral domain. Expanding the input representation into denser spectral bands amplifies manipulation artifacts that are often weak or invisible in the RGB domain, particularly in specific frequency bands. We evaluate HSI-Detect across FaceForensics++ dataset and show the consistent improvements over RGB-only baselines, illustrating the promise of spectral-domain mapping for Deepfake detection.