Abstract:The key components of machine learning are data samples for training, model for learning patterns, and loss function for optimizing accuracy. Analogously, unlearning can potentially be achieved through anti-data samples (or anti-samples), unlearning method, and reversed loss function. While prior research has explored unlearning methods and reversed loss functions, the potential of anti-samples remains largely untapped. In this paper, we introduce UnSTAR: Unlearning with Self-Taught Anti-Sample Reasoning for large language models (LLMs). Our contributions are threefold; first, we propose a novel concept of anti-sample-induced unlearning; second, we generate anti-samples by leveraging misleading rationales, which help reverse learned associations and accelerate the unlearning process; and third, we enable fine-grained targeted unlearning, allowing for the selective removal of specific associations without impacting related knowledge - something not achievable by previous works. Results demonstrate that anti-samples offer an efficient, targeted unlearning strategy for LLMs, opening new avenues for privacy-preserving machine learning and model modification.
Abstract:Federated learning (FL) has enabled collaborative model training across decentralized data sources or clients. While adding new participants to a shared model does not pose great technical hurdles, the removal of a participant and their related information contained in the shared model remains a challenge. To address this problem, federated unlearning has emerged as a critical research direction, seeking to remove information from globally trained models without harming the model performance on the remaining data. Most modern federated unlearning methods use costly approaches such as the use of remaining clients data to retrain the global model or methods that would require heavy computation on client or server side. We introduce Contribution Dampening (ConDa), a framework that performs efficient unlearning by tracking down the parameters which affect the global model for each client and performs synaptic dampening on the parameters of the global model that have privacy infringing contributions from the forgetting client. Our technique does not require clients data or any kind of retraining and it does not put any computational overhead on either the client or server side. We perform experiments on multiple datasets and demonstrate that ConDa is effective to forget a client's data. In experiments conducted on the MNIST, CIFAR10, and CIFAR100 datasets, ConDa proves to be the fastest federated unlearning method, outperforming the nearest state of the art approach by at least 100x. Our emphasis is on the non-IID Federated Learning setting, which presents the greatest challenge for unlearning. Additionally, we validate ConDa's robustness through backdoor and membership inference attacks. We envision this work as a crucial component for FL in adhering to legal and ethical requirements.
Abstract:Recent research has seen significant interest in methods for concept removal and targeted forgetting in diffusion models. In this paper, we conduct a comprehensive white-box analysis to expose significant vulnerabilities in existing diffusion model unlearning methods. We show that the objective functions used for unlearning in the existing methods lead to decoupling of the targeted concepts (meant to be forgotten) for the corresponding prompts. This is concealment and not actual unlearning, which was the original goal. The ineffectiveness of current methods stems primarily from their narrow focus on reducing generation probabilities for specific prompt sets, neglecting the diverse modalities of intermediate guidance employed during the inference process. The paper presents a rigorous theoretical and empirical examination of four commonly used techniques for unlearning in diffusion models. We introduce two new evaluation metrics: Concept Retrieval Score (CRS) and Concept Confidence Score (CCS). These metrics are based on a successful adversarial attack setup that can recover forgotten concepts from unlearned diffusion models. The CRS measures the similarity between the latent representations of the unlearned and fully trained models after unlearning. It reports the extent of retrieval of the forgotten concepts with increasing amount of guidance. The CCS quantifies the confidence of the model in assigning the target concept to the manipulated data. It reports the probability of the unlearned model's generations to be aligned with the original domain knowledge with increasing amount of guidance. Evaluating existing unlearning methods with our proposed stringent metrics for diffusion models reveals significant shortcomings in their ability to truly unlearn concepts. Source Code: https://respailab.github.io/unlearning-or-concealment
Abstract:Continual learning and machine unlearning are crucial challenges in machine learning, typically addressed separately. Continual learning focuses on adapting to new knowledge while preserving past information, whereas unlearning involves selectively forgetting specific subsets of data. In this paper, we introduce a novel framework that jointly tackles both tasks by leveraging controlled knowledge distillation. Our approach enables efficient learning with minimal forgetting and effective targeted unlearning. By incorporating a fixed memory buffer, the system supports learning new concepts while retaining prior knowledge. The distillation process is carefully managed to ensure a balance between acquiring new information and forgetting specific data as needed. Experimental results on benchmark datasets show that our method matches or exceeds the performance of existing approaches in both continual learning and machine unlearning. This unified framework is the first to address both challenges simultaneously, paving the way for adaptable models capable of dynamic learning and forgetting while maintaining strong overall performance.
Abstract:Unlearning methods for recommender systems (RS) have emerged to address privacy issues and concerns about legal compliance. However, evolving user preferences and content licensing issues still remain unaddressed. This is particularly true in case of multi-modal recommender systems (MMRS), which aim to accommodate the growing influence of multi-modal information on user preferences. Previous unlearning methods for RS are inapplicable to MMRS due to incompatibility of multi-modal user-item behavior data graph with the matrix based representation of RS. Partitioning based methods degrade recommendation performance and incur significant overhead costs during aggregation. This paper introduces MMRecUN, a new framework for multi-modal recommendation unlearning, which, to the best of our knowledge, is the first attempt in this direction. Given the trained recommendation model and marked forget data, we devise Reverse Bayesian Personalized Ranking (BPR) objective to force the model to forget it. MMRecUN employs both reverse and forward BPR loss mechanisms to selectively attenuate the impact of interactions within the forget set while concurrently reinforcing the significance of interactions within the retain set. Our experiments demonstrate that MMRecUN outperforms baseline methods across various unlearning requests when evaluated on benchmark multi-modal recommender datasets. MMRecUN achieves recall performance improvements of up to $\mathbf{49.85%}$ compared to the baseline methods. It is up to $\mathbf{1.3}\times$ faster than the \textsc{Gold} model, which is trained on retain data from scratch. MMRecUN offers advantages such as superior performance in removing target elements, preservation of performance for retained elements, and zero overhead costs in comparison to previous methods.
Abstract:Quantifying the value of data within a machine learning workflow can play a pivotal role in making more strategic decisions in machine learning initiatives. The existing Shapley value based frameworks for data valuation in machine learning are computationally expensive as they require considerable amount of repeated training of the model to obtain the Shapley value. In this paper, we introduce an efficient data valuation framework EcoVal, to estimate the value of data for machine learning models in a fast and practical manner. Instead of directly working with individual data sample, we determine the value of a cluster of similar data points. This value is further propagated amongst all the member cluster points. We show that the overall data value can be determined by estimating the intrinsic and extrinsic value of each data. This is enabled by formulating the performance of a model as a \textit{production function}, a concept which is popularly used to estimate the amount of output based on factors like labor and capital in a traditional free economic market. We provide a formal proof of our valuation technique and elucidate the principles and mechanisms that enable its accelerated performance. We demonstrate the real-world applicability of our method by showcasing its effectiveness for both in-distribution and out-of-sample data. This work addresses one of the core challenges of efficient data valuation at scale in machine learning models.
Abstract:Graph unlearning has emerged as a pivotal method to delete information from a pre-trained graph neural network (GNN). One may delete nodes, a class of nodes, edges, or a class of edges. An unlearning method enables the GNN model to comply with data protection regulations (i.e., the right to be forgotten), adapt to evolving data distributions, and reduce the GPU-hours carbon footprint by avoiding repetitive retraining. Existing partitioning and aggregation-based methods have limitations due to their poor handling of local graph dependencies and additional overhead costs. More recently, GNNDelete offered a model-agnostic approach that alleviates some of these issues. Our work takes a novel approach to address these challenges in graph unlearning through knowledge distillation, as it distills to delete in GNN (D2DGN). It is a model-agnostic distillation framework where the complete graph knowledge is divided and marked for retention and deletion. It performs distillation with response-based soft targets and feature-based node embedding while minimizing KL divergence. The unlearned model effectively removes the influence of deleted graph elements while preserving knowledge about the retained graph elements. D2DGN surpasses the performance of existing methods when evaluated on various real-world graph datasets by up to $43.1\%$ (AUC) in edge and node unlearning tasks. Other notable advantages include better efficiency, better performance in removing target elements, preservation of performance for the retained elements, and zero overhead costs. Notably, our D2DGN surpasses the state-of-the-art GNNDelete in AUC by $2.4\%$, improves membership inference ratio by $+1.3$, requires $10.2\times10^6$ fewer FLOPs per forward pass and up to $\mathbf{3.2}\times$ faster.
Abstract:Automated human emotion recognition from facial expressions is a well-studied problem and still remains a very challenging task. Some efficient or accurate deep learning models have been presented in the literature. However, it is quite difficult to design a model that is both efficient and accurate at the same time. Moreover, identifying the minute feature variations in facial regions for both macro and micro-expressions requires expertise in network design. In this paper, we proposed to search for a highly efficient and robust neural architecture for both macro and micro-level facial expression recognition. To the best of our knowledge, this is the first attempt to design a NAS-based solution for both macro and micro-expression recognition. We produce lightweight models with a gradient-based architecture search algorithm. To maintain consistency between macro and micro-expressions, we utilize dynamic imaging and convert microexpression sequences into a single frame, preserving the spatiotemporal features in the facial regions. The EmoNAS has evaluated over 13 datasets (7 macro expression datasets: CK+, DISFA, MUG, ISED, OULU-VIS CASIA, FER2013, RAF-DB, and 6 micro-expression datasets: CASME-I, CASME-II, CAS(ME)2, SAMM, SMIC, MEGC2019 challenge). The proposed models outperform the existing state-of-the-art methods and perform very well in terms of speed and space complexity.
Abstract:With the introduction of data protection and privacy regulations, it has become crucial to remove the lineage of data on demand in a machine learning system. In past few years, there has been notable development in machine unlearning to remove the information of certain training data points efficiently and effectively from the model. In this work, we explore unlearning in a regression problem, particularly in deep learning models. Unlearning in classification and simple linear regression has been investigated considerably. However, unlearning in deep regression models largely remain an untouched problem till now. In this work, we introduce deep regression unlearning methods that are well generalized and robust to privacy attacks. We propose the Blindspot unlearning method which uses a novel weight optimization process. A randomly initialized model, partially exposed to the retain samples and a copy of original model are used together to selectively imprint knowledge about the data that we wish to keep and scrub the information of the data we wish to forget. We also propose a Gaussian distribution based fine tuning method for regression unlearning. The existing evaluation metrics for unlearning in a classification task are not directly applicable for regression unlearning. Therefore, we adapt these metrics for regression task. We devise a membership inference attack to check the privacy leaks in the unlearned regression model. We conduct the experiments on regression tasks for computer vision, natural language processing and forecasting applications. Our deep regression unlearning methods show excellent performance across all of these datasets and metrics.
Abstract:Synthetic tabular data generation becomes crucial when real data is limited, expensive to collect, or simply cannot be used due to privacy concerns. However, producing good quality synthetic data is challenging. Several probabilistic, statistical, and generative adversarial networks (GANs) based approaches have been presented for synthetic tabular data generation. Once generated, evaluating the quality of the synthetic data is quite challenging. Some of the traditional metrics have been used in the literature but there is lack of a common, robust, and single metric. This makes it difficult to properly compare the effectiveness of different synthetic tabular data generation methods. In this paper we propose a new universal metric, TabSynDex, for robust evaluation of synthetic data. TabSynDex assesses the similarity of synthetic data with real data through different component scores which evaluate the characteristics that are desirable for "high quality" synthetic data. Being a single score metric, TabSynDex can also be used to observe and evaluate the training of neural network based approaches. This would help in obtaining insights that was not possible earlier. Further, we present several baseline models for comparative analysis of the proposed evaluation metric with existing generative models.