Abstract:The research presents a study on enhancing the robustness of Wi-Fi-based indoor positioning systems against adversarial attacks. The goal is to improve the positioning accuracy and resilience of these systems under two attack scenarios: Wi-Fi Spoofing and Signal Strength Manipulation. Three models are developed and evaluated: a baseline model (M_Base), an adversarially trained robust model (M_Rob), and an ensemble model (M_Ens). All models utilize a Kolmogorov-Arnold Network (KAN) architecture. The robust model is trained with adversarially perturbed data, while the ensemble model combines predictions from both the base and robust models. Experimental results show that the robust model reduces positioning error by approximately 10% compared to the baseline, achieving 2.03 meters error under Wi-Fi spoofing and 2.00 meters under signal strength manipulation. The ensemble model further outperforms with errors of 2.01 meters and 1.975 meters for the respective attack types. This analysis highlights the effectiveness of adversarial training techniques in mitigating attack impacts. The findings underscore the importance of considering adversarial scenarios in developing indoor positioning systems, as improved resilience can significantly enhance the accuracy and reliability of such systems in mission-critical environments.
Abstract:Continual learning and machine unlearning are crucial challenges in machine learning, typically addressed separately. Continual learning focuses on adapting to new knowledge while preserving past information, whereas unlearning involves selectively forgetting specific subsets of data. In this paper, we introduce a novel framework that jointly tackles both tasks by leveraging controlled knowledge distillation. Our approach enables efficient learning with minimal forgetting and effective targeted unlearning. By incorporating a fixed memory buffer, the system supports learning new concepts while retaining prior knowledge. The distillation process is carefully managed to ensure a balance between acquiring new information and forgetting specific data as needed. Experimental results on benchmark datasets show that our method matches or exceeds the performance of existing approaches in both continual learning and machine unlearning. This unified framework is the first to address both challenges simultaneously, paving the way for adaptable models capable of dynamic learning and forgetting while maintaining strong overall performance.