Abstract:We propose the Hyperbolic Tangent Exponential Linear Unit (TeLU), a neural network hidden activation function defined as TeLU(x)=xtanh(exp(x)). TeLU's design is grounded in the core principles of key activation functions, achieving strong convergence by closely approximating the identity function in its active region while effectively mitigating the vanishing gradient problem in its saturating region. Its simple formulation enhances computational efficiency, leading to improvements in scalability and convergence speed. Unlike many modern activation functions, TeLU seamlessly combines the simplicity and effectiveness of ReLU with the smoothness and analytic properties essential for learning stability in deep neural networks. TeLU's ability to mimic the behavior and optimal hyperparameter settings of ReLU, while introducing the benefits of smoothness and curvature, makes it an ideal drop-in replacement. Its analytic nature positions TeLU as a powerful universal approximator, enhancing both robustness and generalization across a multitude of experiments. We rigorously validate these claims through theoretical analysis and experimental validation, demonstrating TeLU's performance across challenging benchmarks; including ResNet18 on ImageNet, Dynamic-Pooling Transformers on Text8, and Recurrent Neural Networks (RNNs) on the Penn TreeBank dataset. These results highlight TeLU's potential to set a new standard in activation functions, driving more efficient and stable learning in deep neural networks, thereby accelerating scientific discoveries across various fields.
Abstract:Energy-based learning algorithms, such as predictive coding (PC), have garnered significant attention in the machine learning community due to their theoretical properties, such as local operations and biologically plausible mechanisms for error correction. In this work, we rigorously analyze the stability, robustness, and convergence of PC through the lens of dynamical systems theory. We show that, first, PC is Lyapunov stable under mild assumptions on its loss and residual energy functions, which implies intrinsic robustness to small random perturbations due to its well-defined energy-minimizing dynamics. Second, we formally establish that the PC updates approximate quasi-Newton methods by incorporating higher-order curvature information, which makes them more stable and able to converge with fewer iterations compared to models trained via backpropagation (BP). Furthermore, using this dynamical framework, we provide new theoretical bounds on the similarity between PC and other algorithms, i.e., BP and target propagation (TP), by precisely characterizing the role of higher-order derivatives. These bounds, derived through detailed analysis of the Hessian structures, show that PC is significantly closer to quasi-Newton updates than TP, providing a deeper understanding of the stability and efficiency of PC compared to conventional learning methods.
Abstract:This study explores the learnability of memory-less and memory-augmented RNNs, which are theoretically equivalent to Pushdown Automata. Empirical results show that these models often fail to generalize on longer sequences, relying more on precision than mastering symbolic grammar. Experiments on fully trained and component-frozen models reveal that freezing the memory component significantly improves performance, achieving state-of-the-art results on the Penn Treebank dataset (test perplexity reduced from 123.5 to 120.5). Models with frozen memory retained up to 90% of initial performance on longer sequences, compared to a 60% drop in standard models. Theoretical analysis suggests that freezing memory stabilizes temporal dependencies, leading to robust convergence. These findings stress the need for stable memory designs and long-sequence evaluations to understand RNNs true learnability limits.
Abstract:This study investigates the learnability of Recurrent Neural Networks (RNNs) in classifying structured formal languages, focusing on counter and Dyck languages. Traditionally, both first-order (LSTM) and second-order (O2RNN) RNNs have been considered effective for such tasks, primarily based on their theoretical expressiveness within the Chomsky hierarchy. However, our research challenges this notion by demonstrating that RNNs primarily operate as state machines, where their linguistic capabilities are heavily influenced by the precision of their embeddings and the strategies used for sampling negative examples. Our experiments revealed that performance declines significantly as the structural similarity between positive and negative examples increases. Remarkably, even a basic single-layer classifier using RNN embeddings performed better than chance. To evaluate generalization, we trained models on strings up to a length of 40 and tested them on strings from lengths 41 to 500, using 10 unique seeds to ensure statistical robustness. Stability comparisons between LSTM and O2RNN models showed that O2RNNs generally offer greater stability across various scenarios. We further explore the impact of different initialization strategies revealing that our hypothesis is consistent with various RNNs. Overall, this research questions established beliefs about RNNs' computational capabilities, highlighting the importance of data structure and sampling techniques in assessing neural networks' potential for language classification tasks. It emphasizes that stronger constraints on expressivity are crucial for understanding true learnability, as mere expressivity does not capture the essence of learning.
Abstract:Continual learning and machine unlearning are crucial challenges in machine learning, typically addressed separately. Continual learning focuses on adapting to new knowledge while preserving past information, whereas unlearning involves selectively forgetting specific subsets of data. In this paper, we introduce a novel framework that jointly tackles both tasks by leveraging controlled knowledge distillation. Our approach enables efficient learning with minimal forgetting and effective targeted unlearning. By incorporating a fixed memory buffer, the system supports learning new concepts while retaining prior knowledge. The distillation process is carefully managed to ensure a balance between acquiring new information and forgetting specific data as needed. Experimental results on benchmark datasets show that our method matches or exceeds the performance of existing approaches in both continual learning and machine unlearning. This unified framework is the first to address both challenges simultaneously, paving the way for adaptable models capable of dynamic learning and forgetting while maintaining strong overall performance.
Abstract:Prompting techniques have significantly enhanced the capabilities of Large Language Models (LLMs) across various complex tasks, including reasoning, planning, and solving math word problems. However, most research has predominantly focused on language-based reasoning and word problems, often overlooking the potential of LLMs in handling symbol-based calculations and reasoning. This study aims to bridge this gap by rigorously evaluating LLMs on a series of symbolic tasks, such as addition, multiplication, modulus arithmetic, numerical precision, and symbolic counting. Our analysis encompasses eight LLMs, including four enterprise-grade and four open-source models, of which three have been pre-trained on mathematical tasks. The assessment framework is anchored in Chomsky's Hierarchy, providing a robust measure of the computational abilities of these models. The evaluation employs minimally explained prompts alongside the zero-shot Chain of Thoughts technique, allowing models to navigate the solution process autonomously. The findings reveal a significant decline in LLMs' performance on context-free and context-sensitive symbolic tasks as the complexity, represented by the number of symbols, increases. Notably, even the fine-tuned GPT3.5 exhibits only marginal improvements, mirroring the performance trends observed in other models. Across the board, all models demonstrated a limited generalization ability on these symbol-intensive tasks. This research underscores LLMs' challenges with increasing symbolic complexity and highlights the need for specialized training, memory and architectural adjustments to enhance their proficiency in symbol-based reasoning tasks.
Abstract:An intelligent system capable of continual learning is one that can process and extract knowledge from potentially infinitely long streams of pattern vectors. The major challenge that makes crafting such a system difficult is known as catastrophic forgetting - an agent, such as one based on artificial neural networks (ANNs), struggles to retain previously acquired knowledge when learning from new samples. Furthermore, ensuring that knowledge is preserved for previous tasks becomes more challenging when input is not supplemented with task boundary information. Although forgetting in the context of ANNs has been studied extensively, there still exists far less work investigating it in terms of unsupervised architectures such as the venerable self-organizing map (SOM), a neural model often used in clustering and dimensionality reduction. While the internal mechanisms of SOMs could, in principle, yield sparse representations that improve memory retention, we observe that, when a fixed-size SOM processes continuous data streams, it experiences concept drift. In light of this, we propose a generalization of the SOM, the continual SOM (CSOM), which is capable of online unsupervised learning under a low memory budget. Our results, on benchmarks including MNIST, Kuzushiji-MNIST, and Fashion-MNIST, show almost a two times increase in accuracy, and CIFAR-10 demonstrates a state-of-the-art result when tested on (online) unsupervised class incremental learning setting.
Abstract:In this paper, we introduce the Hyperbolic Tangent Exponential Linear Unit (TeLU), a novel neural network activation function, represented as $f(x) = x{\cdot}tanh(e^x)$. TeLU is designed to overcome the limitations of conventional activation functions like ReLU, GELU, and Mish by addressing the vanishing and, to an extent, the exploding gradient problems. Our theoretical analysis and empirical assessments reveal that TeLU outperforms existing activation functions in stability and robustness, effectively adjusting activation outputs' mean towards zero for enhanced training stability and convergence. Extensive evaluations against popular activation functions (ReLU, GELU, SiLU, Mish, Logish, Smish) across advanced architectures, including Resnet-50, demonstrate TeLU's lower variance and superior performance, even under hyperparameter conditions optimized for other functions. In large-scale tests with challenging datasets like CIFAR-10, CIFAR-100, and TinyImageNet, encompassing 860 scenarios, TeLU consistently showcased its effectiveness, positioning itself as a potential new standard for neural network activation functions, boosting stability and performance in diverse deep learning applications.
Abstract:This paper analyzes two competing rule extraction methodologies: quantization and equivalence query. We trained $3600$ RNN models, extracting $18000$ DFA with a quantization approach (k-means and SOM) and $3600$ DFA by equivalence query($L^{*}$) methods across $10$ initialization seeds. We sampled the datasets from $7$ Tomita and $4$ Dyck grammars and trained them on $4$ RNN cells: LSTM, GRU, O2RNN, and MIRNN. The observations from our experiments establish the superior performance of O2RNN and quantization-based rule extraction over others. $L^{*}$, primarily proposed for regular grammars, performs similarly to quantization methods for Tomita languages when neural networks are perfectly trained. However, for partially trained RNNs, $L^{*}$ shows instability in the number of states in DFA, e.g., for Tomita 5 and Tomita 6 languages, $L^{*}$ produced more than $100$ states. In contrast, quantization methods result in rules with number of states very close to ground truth DFA. Among RNN cells, O2RNN produces stable DFA consistently compared to other cells. For Dyck Languages, we observe that although GRU outperforms other RNNs in network performance, the DFA extracted by O2RNN has higher performance and better stability. The stability is computed as the standard deviation of accuracy on test sets on networks trained across $10$ seeds. On Dyck Languages, quantization methods outperformed $L^{*}$ with better stability in accuracy and the number of states. $L^{*}$ often showed instability in accuracy in the order of $16\% - 22\%$ for GRU and MIRNN while deviation for quantization methods varied in $5\% - 15\%$. In many instances with LSTM and GRU, DFA's extracted by $L^{*}$ even failed to beat chance accuracy ($50\%$), while those extracted by quantization method had standard deviation in the $7\%-17\%$ range. For O2RNN, both rule extraction methods had deviation in the $0.5\% - 3\%$ range.
Abstract:Artificial neural networks (ANNs) with recurrence and self-attention have been shown to be Turing-complete (TC). However, existing work has shown that these ANNs require multiple turns or unbounded computation time, even with unbounded precision in weights, in order to recognize TC grammars. However, under constraints such as fixed or bounded precision neurons and time, ANNs without memory are shown to struggle to recognize even context-free languages. In this work, we extend the theoretical foundation for the $2^{nd}$-order recurrent network ($2^{nd}$ RNN) and prove there exists a class of a $2^{nd}$ RNN that is Turing-complete with bounded time. This model is capable of directly encoding a transition table into its recurrent weights, enabling bounded time computation and is interpretable by design. We also demonstrate that $2$nd order RNNs, without memory, under bounded weights and time constraints, outperform modern-day models such as vanilla RNNs and gated recurrent units in recognizing regular grammars. We provide an upper bound and a stability analysis on the maximum number of neurons required by $2$nd order RNNs to recognize any class of regular grammar. Extensive experiments on the Tomita grammars support our findings, demonstrating the importance of tensor connections in crafting computationally efficient RNNs. Finally, we show $2^{nd}$ order RNNs are also interpretable by extraction and can extract state machines with higher success rates as compared to first-order RNNs. Our results extend the theoretical foundations of RNNs and offer promising avenues for future explainable AI research.