NRCIEA
Abstract:The recent advancement of Multimodal Large Language Models (MLLMs) has significantly improved their fine-grained perception of single images and general comprehension across multiple images. However, existing MLLMs still face challenges in achieving precise grounding in complex multi-image scenarios. To address this, we first explore a Chain-of-Thought (CoT) framework that integrates single-image grounding with multi-image comprehension. While partially effective, it remains unstable and struggles to capture abstract visual information due to its non-end-to-end nature. Therefore, we introduce Migician, the first multi-image grounding model capable of performing free-form and accurate grounding across multiple images. To support this, we present the MGrounding-630k dataset, which comprises data for several multi-image grounding tasks derived from existing datasets, along with newly generated free-form grounding instruction-following data. Furthermore, we propose MIG-Bench, a comprehensive benchmark specifically designed for evaluating multi-image grounding capabilities. Experimental results demonstrate that our model achieves significantly superior multi-image grounding capabilities, outperforming the best existing MLLMs by 21.61% and even surpassing much larger 70B models. Our code, model, dataset, and benchmark are fully open-sourced at https://migician-vg.github.io/.
Abstract:LiDAR is widely used in Simultaneous Localization and Mapping (SLAM) and autonomous driving. The LiDAR odometry is of great importance in multi-sensor fusion. However, in some unstructured environments, the point cloud registration cannot constrain the poses of the LiDAR due to its sparse geometric features, which leads to the degeneracy of multi-sensor fusion accuracy. To address this problem, we propose a novel real-time approach to sense and compensate for the degeneracy of LiDAR. Firstly, this paper introduces the degeneracy factor with clear meaning, which can measure the degeneracy of LiDAR. Then, the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering method adaptively perceives the degeneracy with better environmental generalization. Finally, the degeneracy perception results are utilized to fuse LiDAR and IMU, thus effectively resisting degeneracy effects. Experiments on our dataset show the method's high accuracy and robustness and validate our algorithm's adaptability to different environments and LiDAR scanning modalities.
Abstract:Existing LiDAR-Inertial Odometry (LIO) frameworks typically utilize prior state trajectories derived from IMU integration to compensate for the motion distortion within LiDAR frames, and demonstrate outstanding accuracy and stability in regular low-speed and smooth scenes. However, in high-speed or intense motion scenarios, the residual distortion may increase due to the limitation of IMU's accuracy and frequency, which will degrade the consistency between the LiDAR frame with its represented geometric environment, leading pointcloud registration to fall into local optima and consequently increasing the drift in long-time and large-scale localization. To address the issue, we propose a novel asymptotically and consistently converging LIO framework called AC-LIO. First, during the iterative state estimation, we backwards propagate the update term based on the prior state chain, and asymptotically compensate the residual distortion before next iteration. Second, considering the weak correlation between the initial error and motion distortion of current frame, we propose a convergence criteria based on pointcloud constraints to control the back propagation. The approach of guiding the asymptotic distortion compensation based on convergence criteria can promote the consistent convergence of pointcloud registration and increase the accuracy and robustness of LIO. Experiments show that our AC-LIO framework, compared to other state-of-the-art frameworks, effectively promotes consistent convergence in state estimation and further improves the accuracy of long-time and large-scale localization and mapping.
Abstract:Diffusion models have recently been employed to generate high-quality images, reducing the need for manual data collection and improving model generalization in tasks such as object detection, instance segmentation, and image perception. However, the synthetic framework is usually designed with meticulous human effort for each task due to various requirements on image layout, content, and annotation formats, restricting the application of synthetic data on more general scenarios. In this paper, we propose AnySynth, a unified framework integrating adaptable, comprehensive, and highly controllable components capable of generating an arbitrary type of synthetic data given diverse requirements. Specifically, the Task-Specific Layout Generation Module is first introduced to produce reasonable layouts for different tasks by leveraging the generation ability of large language models and layout priors of real-world images. A Uni-Controlled Image Generation Module is then developed to create high-quality synthetic images that are controllable and based on the generated layouts. In addition, user specific reference images, and style images can be incorporated into the generation to task requirements. Finally, the Task-Oriented Annotation Module offers precise and detailed annotations for the generated images across different tasks. We have validated our framework's performance across various tasks, including Few-shot Object Detection, Cross-domain Object Detection, Zero-shot Composed Image Retrieval, and Multi-modal Image Perception and Grounding. The specific data synthesized by our framework significantly improves model performance in these tasks, demonstrating the generality and effectiveness of our framework.
Abstract:The Zero-shot Composed Image Retrieval (ZSCIR) requires retrieving images that match the query image and the relative captions. Current methods focus on projecting the query image into the text feature space, subsequently combining them with features of query texts for retrieval. However, retrieving images only with the text features cannot guarantee detailed alignment due to the natural gap between images and text. In this paper, we introduce Imagined Proxy for CIR (IP-CIR), a training-free method that creates a proxy image aligned with the query image and text description, enhancing query representation in the retrieval process. We first leverage the large language model's generalization capability to generate an image layout, and then apply both the query text and image for conditional generation. The robust query features are enhanced by merging the proxy image, query image, and text semantic perturbation. Our newly proposed balancing metric integrates text-based and proxy retrieval similarities, allowing for more accurate retrieval of the target image while incorporating image-side information into the process. Experiments on three public datasets demonstrate that our method significantly improves retrieval performances. We achieve state-of-the-art (SOTA) results on the CIRR dataset with a Recall@K of 70.07 at K=10. Additionally, we achieved an improvement in Recall@10 on the FashionIQ dataset, rising from 45.11 to 45.74, and improved the baseline performance in CIRCO with a mAPK@10 score, increasing from 32.24 to 34.26.
Abstract:Multimodal Sentiment Analysis (MSA) utilizes multimodal data to infer the users' sentiment. Previous methods focus on equally treating the contribution of each modality or statically using text as the dominant modality to conduct interaction, which neglects the situation where each modality may become dominant. In this paper, we propose a Knowledge-Guided Dynamic Modality Attention Fusion Framework (KuDA) for multimodal sentiment analysis. KuDA uses sentiment knowledge to guide the model dynamically selecting the dominant modality and adjusting the contributions of each modality. In addition, with the obtained multimodal representation, the model can further highlight the contribution of dominant modality through the correlation evaluation loss. Extensive experiments on four MSA benchmark datasets indicate that KuDA achieves state-of-the-art performance and is able to adapt to different scenarios of dominant modality.
Abstract:LiDAR-Inertial Odometry (LIO) demonstrates outstanding accuracy and stability in general low-speed and smooth motion scenarios. However, in high-speed and intense motion scenarios, such as sharp turns, two primary challenges arise: firstly, due to the limitations of IMU frequency, the error in estimating significantly non-linear motion states escalates; secondly, drastic changes in the Field of View (FOV) may diminish the spatial overlap between LiDAR frame and pointcloud map (or between frames), leading to insufficient data association and constraint degradation. To address these issues, we propose a novel Adaptive Sliding window LIO framework (AS-LIO) guided by the Spatial Overlap Degree (SOD). Initially, we assess the SOD between the LiDAR frames and the registered map, directly evaluating the adverse impact of current FOV variation on pointcloud alignment. Subsequently, we design an adaptive sliding window to manage the continuous LiDAR stream and control state updates, dynamically adjusting the update step according to the SOD. This strategy enables our odometry to adaptively adopt higher update frequency to precisely characterize trajectory during aggressive FOV variation, thus effectively reducing the non-linear error in positioning. Meanwhile, the historical constraints within the sliding window reinforce the frame-to-map data association, ensuring the robustness of state estimation. Experiments show that our AS-LIO framework can quickly perceive and respond to challenging FOV change, outperforming other state-of-the-art LIO frameworks in terms of accuracy and robustness.
Abstract:Implicit Neural Representation (INR) has become a popular method for representing visual signals (e.g., 2D images and 3D scenes), demonstrating promising results in various downstream applications. Given its potential as a medium for visual signals, exploring the development of a neural blending method that utilizes INRs is a natural progression. Neural blending involves merging two INRs to create a new INR that encapsulates information from both original representations. A direct approach involves applying traditional image editing methods to the INR rendering process. However, this method often results in blending distortions, artifacts, and color shifts, primarily due to the discretization of the underlying pixel grid and the introduction of boundary conditions for solving variational problems. To tackle this issue, we introduce the Neural Poisson Solver, a plug-and-play and universally applicable framework across different signal dimensions for blending visual signals represented by INRs. Our Neural Poisson Solver offers a variational problem-solving approach based on the continuous Poisson equation, demonstrating exceptional performance across various domains. Specifically, we propose a gradient-guided neural solver to represent the solution process of the variational problem, refining the target signal to achieve natural blending results. We also develop a Poisson equation-based loss and optimization scheme to train our solver, ensuring it effectively blends the input INR scenes while preserving their inherent structure and semantic content. The lack of dependence on additional prior knowledge makes our method easily adaptable to various task categories, highlighting its versatility. Comprehensive experimental results validate the robustness of our approach across multiple dimensions and blending tasks.
Abstract:We introduce the Multi-Instance Generation (MIG) task, which focuses on generating multiple instances within a single image, each accurately placed at predefined positions with attributes such as category, color, and shape, strictly following user specifications. MIG faces three main challenges: avoiding attribute leakage between instances, supporting diverse instance descriptions, and maintaining consistency in iterative generation. To address attribute leakage, we propose the Multi-Instance Generation Controller (MIGC). MIGC generates multiple instances through a divide-and-conquer strategy, breaking down multi-instance shading into single-instance tasks with singular attributes, later integrated. To provide more types of instance descriptions, we developed MIGC++. MIGC++ allows attribute control through text \& images and position control through boxes \& masks. Lastly, we introduced the Consistent-MIG algorithm to enhance the iterative MIG ability of MIGC and MIGC++. This algorithm ensures consistency in unmodified regions during the addition, deletion, or modification of instances, and preserves the identity of instances when their attributes are changed. We introduce the COCO-MIG and Multimodal-MIG benchmarks to evaluate these methods. Extensive experiments on these benchmarks, along with the COCO-Position benchmark and DrawBench, demonstrate that our methods substantially outperform existing techniques, maintaining precise control over aspects including position, attribute, and quantity. Project page: https://github.com/limuloo/MIGC.
Abstract:Touch holds a pivotal position in enhancing the perceptual and interactive capabilities of both humans and robots. Despite its significance, current tactile research mainly focuses on visual and tactile modalities, overlooking the language domain. Inspired by this, we construct Touch100k, a paired touch-language-vision dataset at the scale of 100k, featuring tactile sensation descriptions in multiple granularities (i.e., sentence-level natural expressions with rich semantics, including contextual and dynamic relationships, and phrase-level descriptions capturing the key features of tactile sensations). Based on the dataset, we propose a pre-training method, Touch-Language-Vision Representation Learning through Curriculum Linking (TLV-Link, for short), inspired by the concept of curriculum learning. TLV-Link aims to learn a tactile representation for the GelSight sensor and capture the relationship between tactile, language, and visual modalities. We evaluate our representation's performance across two task categories (namely, material property identification and robot grasping prediction), focusing on tactile representation and zero-shot touch understanding. The experimental evaluation showcases the effectiveness of our representation. By enabling TLV-Link to achieve substantial improvements and establish a new state-of-the-art in touch-centric multimodal representation learning, Touch100k demonstrates its value as a valuable resource for research. Project page: https://cocacola-lab.github.io/Touch100k/.