Abstract:Extracting a small subset of crucial rationales from the full input is a key problem in explainability research. The most widely used fundamental criterion for rationale extraction is the maximum mutual information (MMI) criterion. In this paper, we first demonstrate that MMI suffers from diminishing marginal returns. Once part of the rationale has been identified, finding the remaining portions contributes only marginally to increasing the mutual information, making it difficult to use MMI to locate the rest. In contrast to MMI that aims to reproduce the prediction, we seek to identify the parts of the input that the network can actually utilize. This is achieved by comparing how different rationale candidates match the capability space of the weight matrix. The weight matrix of a neural network is typically low-rank, meaning that the linear combinations of its column vectors can only cover part of the directions in a high-dimensional space (high-dimension: the dimensions of an input vector). If an input is fully utilized by the network, {it generally matches these directions (e.g., a portion of a hypersphere), resulting in a representation with a high norm. Conversely, if an input primarily falls outside (orthogonal to) these directions}, its representation norm will approach zero, behaving like noise that the network cannot effectively utilize. Building on this, we propose using the norms of rationale candidates as an alternative objective to MMI. Through experiments on four text classification datasets and one graph classification dataset using three network architectures (GRUs, BERT, and GCN), we show that our method outperforms MMI and its improved variants in identifying better rationales. We also compare our method with a representative LLM (llama-3.1-8b-instruct) and find that our simple method gets comparable results to it and can sometimes even outperform it.
Abstract:In recommender systems, the patterns of user behaviors (e.g., purchase, click) may vary greatly in different contexts (e.g., time and location). This is because user behavior is jointly determined by two types of factors: intrinsic factors, which reflect consistent user preference, and extrinsic factors, which reflect external incentives that may vary in different contexts. Differentiating between intrinsic and extrinsic factors helps learn user behaviors better. However, existing studies have only considered differentiating them from a single, pre-defined context (e.g., time or location), ignoring the fact that a user's extrinsic factors may be influenced by the interplay of various contexts at the same time. In this paper, we propose the Intrinsic-Extrinsic Disentangled Recommendation (IEDR) model, a generic framework that differentiates intrinsic from extrinsic factors considering various contexts simultaneously, enabling more accurate differentiation of factors and hence the improvement of recommendation accuracy. IEDR contains a context-invariant contrastive learning component to capture intrinsic factors, and a disentanglement component to extract extrinsic factors under the interplay of various contexts. The two components work together to achieve effective factor learning. Extensive experiments on real-world datasets demonstrate IEDR's effectiveness in learning disentangled factors and significantly improving recommendation accuracy by up to 4% in NDCG.
Abstract:Retrieval-augmented generation (RAG) is a key technique for leveraging external knowledge and reducing hallucinations in large language models (LLMs). However, RAG still struggles to fully prevent hallucinated responses. To address this, it is essential to identify samples prone to hallucination or guide LLMs toward correct responses, which experts then annotate to develop high-quality datasets for refining LLMs. However, the growing scarcity of such datasets makes their creation challenging. This paper proposes using the vast amount of conversations from widespread LLM usage to build these datasets, training LLMs to avoid hallucination-prone questions while accurately responding to manageable ones. Given the impracticality of expert-annotating all conversation records, the paper introduces AL4RAG, which uses active learning to select the most suitable conversation samples for annotation, optimizing performance within an annotation budget. Additionally, recognizing that traditional active learning methods are not fully compatible with RAG due to unsuitable distance metrics, we develop a novel sample distance measurement for RAG active learning. Extensive experiments show that our method consistently outperforms baselines across multiple metrics.
Abstract:With the recent surge in interest surrounding generative paradigms, generative recommendation has increasingly attracted the attention of researchers in the recommendation community. This paradigm generally consists of two stages. In the first stage, pretrained semantic embeddings or collaborative ID embeddings are quantized to create item codes, aiming to capture and preserve rich semantic or collaborative knowledge within these codes. The second stage involves utilizing these discrete codes to perform an autoregressive sequence generation task. Existing methods often either overlook collaborative or semantic knowledge, or combine the two roughly. In this paper, we observe that naively concatenating representations from semantic and collaborative modality leads to a semantic domination issue, where the resulting representation is overly influenced by semantic information, effectively overshadowing the collaborative representation. Consequently, downstream recommendation tasks fail to fully exploit the knowledge from both modalities, resulting in suboptimal performance. To address this, we propose a progressive collaborative and semantic knowledge fusion model for generative recommendation, named PRORec, which integrates semantic and collaborative knowledge with a unified code through a two-stage framework. Specifically, in the first stage, we propose a cross-modality knowledge alignment task, which integrates semantic knowledge into collaborative embeddings, enhancing their representational capability. In the second stage, we propose an in-modality knowledge distillation task, designed to effectively capture and integrate knowledge from both semantic and collaborative modalities. Extensive experiments on three widely used benchmarks validate the effectiveness of our approach, demonstrating its superiority compared to existing methods.
Abstract:Federated Continual Learning (FCL) aims to enable sequentially privacy-preserving model training on streams of incoming data that vary in edge devices by preserving previous knowledge while adapting to new data. Current FCL literature focuses on restricted data privacy and access to previously seen data while imposing no constraints on the training overhead. This is unreasonable for FCL applications in real-world scenarios, where edge devices are primarily constrained by resources such as storage, computational budget, and label rate. We revisit this problem with a large-scale benchmark and analyze the performance of state-of-the-art FCL approaches under different resource-constrained settings. Various typical FCL techniques and six datasets in two incremental learning scenarios (Class-IL and Domain-IL) are involved in our experiments. Through extensive experiments amounting to a total of over 1,000+ GPU hours, we find that, under limited resource-constrained settings, existing FCL approaches, with no exception, fail to achieve the expected performance. Our conclusions are consistent in the sensitivity analysis. This suggests that most existing FCL methods are particularly too resource-dependent for real-world deployment. Moreover, we study the performance of typical FCL techniques with resource constraints and shed light on future research directions in FCL.
Abstract:The recent advancement of Multimodal Large Language Models (MLLMs) has significantly improved their fine-grained perception of single images and general comprehension across multiple images. However, existing MLLMs still face challenges in achieving precise grounding in complex multi-image scenarios. To address this, we first explore a Chain-of-Thought (CoT) framework that integrates single-image grounding with multi-image comprehension. While partially effective, it remains unstable and struggles to capture abstract visual information due to its non-end-to-end nature. Therefore, we introduce Migician, the first multi-image grounding model capable of performing free-form and accurate grounding across multiple images. To support this, we present the MGrounding-630k dataset, which comprises data for several multi-image grounding tasks derived from existing datasets, along with newly generated free-form grounding instruction-following data. Furthermore, we propose MIG-Bench, a comprehensive benchmark specifically designed for evaluating multi-image grounding capabilities. Experimental results demonstrate that our model achieves significantly superior multi-image grounding capabilities, outperforming the best existing MLLMs by 21.61% and even surpassing much larger 70B models. Our code, model, dataset, and benchmark are fully open-sourced at https://migician-vg.github.io/.
Abstract:Cross-Domain Few-Shot Learning (CDFSL) requires the model to transfer knowledge from the data-abundant source domain to data-scarce target domains for fast adaptation, where the large domain gap makes CDFSL a challenging problem. Masked Autoencoder (MAE) excels in effectively using unlabeled data and learning image's global structures, enhancing model generalization and robustness. However, in the CDFSL task with significant domain shifts, we find MAE even shows lower performance than the baseline supervised models. In this paper, we first delve into this phenomenon for an interpretation. We find that MAE tends to focus on low-level domain information during reconstructing pixels while changing the reconstruction target to token features could mitigate this problem. However, not all features are beneficial, as we then find reconstructing high-level features can hardly improve the model's transferability, indicating a trade-off between filtering domain information and preserving the image's global structure. In all, the reconstruction target matters for the CDFSL task. Based on the above findings and interpretations, we further propose Domain-Agnostic Masked Image Modeling (DAMIM) for the CDFSL task. DAMIM includes an Aggregated Feature Reconstruction module to automatically aggregate features for reconstruction, with balanced learning of domain-agnostic information and images' global structure, and a Lightweight Decoder module to further benefit the encoder's generalizability. Experiments on four CDFSL datasets demonstrate that our method achieves state-of-the-art performance.
Abstract:Recent studies have shown that Federated learning (FL) is vulnerable to Gradient Inversion Attacks (GIA), which can recover private training data from shared gradients. However, existing methods are designed for dense, continuous data such as images or vectorized texts, and cannot be directly applied to sparse and discrete graph data. This paper first explores GIA's impact on Federated Graph Learning (FGL) and introduces Graph Inversion from Gradient in Federated Learning (FedGIG), a novel GIA method specifically designed for graph-structured data. FedGIG includes the adjacency matrix constraining module, which ensures the sparsity and discreteness of the reconstructed graph data, and the subgraph reconstruction module, which is designed to complete missing common subgraph structures. Extensive experiments on molecular datasets demonstrate FedGIG's superior accuracy over existing GIA techniques.
Abstract:Non-Centralized Continual Learning (NCCL) has become an emerging paradigm for enabling distributed devices such as vehicles and servers to handle streaming data from a joint non-stationary environment. To achieve high reliability and scalability in deploying this paradigm in distributed systems, it is essential to conquer challenges stemming from both spatial and temporal dimensions, manifesting as distribution shifts, catastrophic forgetting, heterogeneity, and privacy issues. This survey focuses on a comprehensive examination of the development of the non-centralized continual learning algorithms and the real-world deployment across distributed devices. We begin with an introduction to the background and fundamentals of non-centralized learning and continual learning. Then, we review existing solutions from three levels to represent how existing techniques alleviate the catastrophic forgetting and distribution shift. Additionally, we delve into the various types of heterogeneity issues, security, and privacy attributes, as well as real-world applications across three prevalent scenarios. Furthermore, we establish a large-scale benchmark to revisit this problem and analyze the performance of the state-of-the-art NCCL approaches. Finally, we discuss the important challenges and future research directions in NCCL.
Abstract:Continual Federated Learning (CFL) allows distributed devices to collaboratively learn novel concepts from continuously shifting training data while avoiding knowledge forgetting of previously seen tasks. To tackle this challenge, most current CFL approaches rely on extensive rehearsal of previous data. Despite effectiveness, rehearsal comes at a cost to memory, and it may also violate data privacy. Considering these, we seek to apply regularization techniques to CFL by considering their cost-efficient properties that do not require sample caching or rehearsal. Specifically, we first apply traditional regularization techniques to CFL and observe that existing regularization techniques, especially synaptic intelligence, can achieve promising results under homogeneous data distribution but fail when the data is heterogeneous. Based on this observation, we propose a simple yet effective regularization algorithm for CFL named FedSSI, which tailors the synaptic intelligence for the CFL with heterogeneous data settings. FedSSI can not only reduce computational overhead without rehearsal but also address the data heterogeneity issue. Extensive experiments show that FedSSI achieves superior performance compared to state-of-the-art methods.