Abstract:Humans exhibit a remarkable ability to learn quickly from a limited number of labeled samples, a capability that starkly contrasts with that of current machine learning systems. Unsupervised Few-Shot Learning (U-FSL) seeks to bridge this divide by reducing reliance on annotated datasets during initial training phases. In this work, we first quantitatively assess the impacts of Masked Image Modeling (MIM) and Contrastive Learning (CL) on few-shot learning tasks. Our findings highlight the respective limitations of MIM and CL in terms of discriminative and generalization abilities, which contribute to their underperformance in U-FSL contexts. To address these trade-offs between generalization and discriminability in unsupervised pretraining, we introduce a novel paradigm named Masked Image Contrastive Modeling (MICM). MICM creatively combines the targeted object learning strength of CL with the generalized visual feature learning capability of MIM, significantly enhancing its efficacy in downstream few-shot learning inference. Extensive experimental analyses confirm the advantages of MICM, demonstrating significant improvements in both generalization and discrimination capabilities for few-shot learning. Our comprehensive quantitative evaluations further substantiate the superiority of MICM, showing that our two-stage U-FSL framework based on MICM markedly outperforms existing leading baselines.
Abstract:Few-shot open-set recognition (FSOR) is a challenging task that requires a model to recognize known classes and identify unknown classes with limited labeled data. Existing approaches, particularly Negative-Prototype-Based methods, generate negative prototypes based solely on known class data. However, as the unknown space is infinite while the known space is limited, these methods suffer from limited representation capability. To address this limitation, we propose a novel approach, termed \textbf{D}iversified \textbf{N}egative \textbf{P}rototypes \textbf{G}enerator (DNPG), which adopts the principle of "learning unknowns from unknowns." Our method leverages the unknown space information learned from base classes to generate more representative negative prototypes for novel classes. During the pre-training phase, we learn the unknown space representation of the base classes. This representation, along with inter-class relationships, is then utilized in the meta-learning process to construct negative prototypes for novel classes. To prevent prototype collapse and ensure adaptability to varying data compositions, we introduce the Swap Alignment (SA) module. Our DNPG model, by learning from the unknown space, generates negative prototypes that cover a broader unknown space, thereby achieving state-of-the-art performance on three standard FSOR datasets.
Abstract:One important desideratum of lifelong learning aims to discover novel classes from unlabelled data in a continuous manner. The central challenge is twofold: discovering and learning novel classes while mitigating the issue of catastrophic forgetting of established knowledge. To this end, we introduce a new paradigm called Adaptive Discovering and Merging (ADM) to discover novel categories adaptively in the incremental stage and integrate novel knowledge into the model without affecting the original knowledge. To discover novel classes adaptively, we decouple representation learning and novel class discovery, and use Triple Comparison (TC) and Probability Regularization (PR) to constrain the probability discrepancy and diversity for adaptive category assignment. To merge the learned novel knowledge adaptively, we propose a hybrid structure with base and novel branches named Adaptive Model Merging (AMM), which reduces the interference of the novel branch on the old classes to preserve the previous knowledge, and merges the novel branch to the base model without performance loss and parameter growth. Extensive experiments on several datasets show that ADM significantly outperforms existing class-incremental Novel Class Discovery (class-iNCD) approaches. Moreover, our AMM also benefits the class-incremental Learning (class-IL) task by alleviating the catastrophic forgetting problem.
Abstract:Large language models (LLMs) have enabled remarkable advances in automated task-solving with multi-agent systems. However, most existing LLM-based multi-agent approaches rely on predefined agents to handle simple tasks, limiting the adaptability of multi-agent collaboration to different scenarios. Therefore, we introduce AutoAgents, an innovative framework that adaptively generates and coordinates multiple specialized agents to build an AI team according to different tasks. Specifically, AutoAgents couples the relationship between tasks and roles by dynamically generating multiple required agents based on task content and planning solutions for the current task based on the generated expert agents. Multiple specialized agents collaborate with each other to efficiently accomplish tasks. Concurrently, an observer role is incorporated into the framework to reflect on the designated plans and agents' responses and improve upon them. Our experiments on various benchmarks demonstrate that AutoAgents generates more coherent and accurate solutions than the existing multi-agent methods. This underscores the significance of assigning different roles to different tasks and of team cooperation, offering new perspectives for tackling complex tasks. The repository of this project is available at https://github.com/Link-AGI/AutoAgents.
Abstract:Multi-modal large language models have garnered significant interest recently. Though, most of the works focus on vision-language multi-modal models providing strong capabilities in following vision-and-language instructions. However, we claim that speech is also an important modality through which humans interact with the world. Hence, it is crucial for a general-purpose assistant to be able to follow multi-modal speech-and-language instructions. In this work, we propose Large Language and Speech Model (LLaSM). LLaSM is an end-to-end trained large multi-modal speech-language model with cross-modal conversational abilities, capable of following speech-and-language instructions. Our early experiments show that LLaSM demonstrates a more convenient and natural way for humans to interact with artificial intelligence. Specifically, we also release a large Speech Instruction Following dataset LLaSM-Audio-Instructions. Code and demo are available at https://github.com/LinkSoul-AI/LLaSM and https://huggingface.co/spaces/LinkSoul/LLaSM. The LLaSM-Audio-Instructions dataset is available at https://huggingface.co/datasets/LinkSoul/LLaSM-Audio-Instructions.
Abstract:The sparsity of Deep Neural Networks is well investigated to maximize the performance and reduce the size of overparameterized networks as possible. Existing methods focus on pruning parameters in the training process by using thresholds and metrics. Meanwhile, feature similarity between different layers has not been discussed sufficiently before, which could be rigorously proved to be highly correlated to the network sparsity in this paper. Inspired by interlayer feature similarity in overparameterized models, we investigate the intrinsic link between network sparsity and interlayer feature similarity. Specifically, we prove that reducing interlayer feature similarity based on Centered Kernel Alignment (CKA) improves the sparsity of the network by using information bottleneck theory. Applying such theory, we propose a plug-and-play CKA-based Sparsity Regularization for sparse network training, dubbed CKA-SR, which utilizes CKA to reduce feature similarity between layers and increase network sparsity. In other words, layers of our sparse network tend to have their own identity compared to each other. Experimentally, we plug the proposed CKA-SR into the training process of sparse network training methods and find that CKA-SR consistently improves the performance of several State-Of-The-Art sparse training methods, especially at extremely high sparsity. Code is included in the supplementary materials.
Abstract:The sensitivity of deep neural networks to compressed images hinders their usage in many real applications, which means classification networks may fail just after taking a screenshot and saving it as a compressed file. In this paper, we argue that neglected disposable coding parameters stored in compressed files could be picked up to reduce the sensitivity of deep neural networks to compressed images. Specifically, we resort to using one of the representative parameters, quantization steps, to facilitate image classification. Firstly, based on quantization steps, we propose a novel quantization aware confidence (QAC), which is utilized as sample weights to reduce the influence of quantization on network training. Secondly, we utilize quantization steps to alleviate the variance of feature distributions, where a quantization aware batch normalization (QABN) is proposed to replace batch normalization of classification networks. Extensive experiments show that the proposed method significantly improves the performance of classification networks on CIFAR-10, CIFAR-100, and ImageNet. The code is released on https://github.com/LiMaPKU/QSAM.git
Abstract:With the urgent demand for generalized deep models, many pre-trained big models are proposed, such as BERT, ViT, GPT, etc. Inspired by the success of these models in single domains (like computer vision and natural language processing), the multi-modal pre-trained big models have also drawn more and more attention in recent years. In this work, we give a comprehensive survey of these models and hope this paper could provide new insights and helps fresh researchers to track the most cutting-edge works. Specifically, we firstly introduce the background of multi-modal pre-training by reviewing the conventional deep learning, pre-training works in natural language process, computer vision, and speech. Then, we introduce the task definition, key challenges, and advantages of multi-modal pre-training models (MM-PTMs), and discuss the MM-PTMs with a focus on data, objectives, network architectures, and knowledge enhanced pre-training. After that, we introduce the downstream tasks used for the validation of large-scale MM-PTMs, including generative, classification, and regression tasks. We also give visualization and analysis of the model parameters and results on representative downstream tasks. Finally, we point out possible research directions for this topic that may benefit future works. In addition, we maintain a continuously updated paper list for large-scale pre-trained multi-modal big models: https://github.com/wangxiao5791509/MultiModal_BigModels_Survey
Abstract:Due to the binary spike signals making converting the traditional high-power multiply-accumulation (MAC) into a low-power accumulation (AC) available, the brain-inspired Spiking Neural Networks (SNNs) are gaining more and more attention. However, the binary spike propagation of the Full-Spike Neural Networks (FSNN) with limited time steps is prone to significant information loss. To improve performance, several state-of-the-art SNN models trained from scratch inevitably bring many non-spike operations. The non-spike operations cause additional computational consumption and may not be deployed on some neuromorphic hardware where only spike operation is allowed. To train a large-scale FSNN with high performance, this paper proposes a novel Dual-Stream Training (DST) method which adds a detachable Auxiliary Accumulation Pathway (AAP) to the full spiking residual networks. The accumulation in AAP could compensate for the information loss during the forward and backward of full spike propagation, and facilitate the training of the FSNN. In the test phase, the AAP could be removed and only the FSNN remained. This not only keeps the lower energy consumption but also makes our model easy to deploy. Moreover, for some cases where the non-spike operations are available, the APP could also be retained in test inference and improve feature discrimination by introducing a little non-spike consumption. Extensive experiments on ImageNet, DVS Gesture, and CIFAR10-DVS datasets demonstrate the effectiveness of DST.
Abstract:Out-of-distribution (OOD) detection is vital to safety-critical machine learning applications and has thus been extensively studied, with a plethora of methods developed in the literature. However, the field currently lacks a unified, strictly formulated, and comprehensive benchmark, which often results in unfair comparisons and inconclusive results. From the problem setting perspective, OOD detection is closely related to neighboring fields including anomaly detection (AD), open set recognition (OSR), and model uncertainty, since methods developed for one domain are often applicable to each other. To help the community to improve the evaluation and advance, we build a unified, well-structured codebase called OpenOOD, which implements over 30 methods developed in relevant fields and provides a comprehensive benchmark under the recently proposed generalized OOD detection framework. With a comprehensive comparison of these methods, we are gratified that the field has progressed significantly over the past few years, where both preprocessing methods and the orthogonal post-hoc methods show strong potential.