Abstract:Incremental object detection (IOD) is challenged by background shift, where background categories in sequential data may include previously learned or future classes. Inspired by the vision-language foundation models such as CLIP, these models capture shared attributes from extensive image-text paired data during pre-training. We propose a novel method utilizing attributes in vision-language foundation models for incremental object detection. Our method constructs a Class-Agnostic Shared Attribute base (CASA) to capture common semantic information among incremental classes. Specifically, we utilize large language models to generate candidate textual attributes and select the most relevant ones based on current training data, recording their significance in an attribute assignment matrix. For subsequent tasks, we freeze the retained attributes and continue selecting from the remaining candidates while updating the attribute assignment matrix accordingly. Furthermore, we employ OWL-ViT as our baseline, preserving the original parameters of the pre-trained foundation model. Our method adds only 0.7% to parameter storage through parameter-efficient fine-tuning to significantly enhance the scalability and adaptability of IOD. Extensive two-phase and multi-phase experiments on the COCO dataset demonstrate the state-of-the-art performance of our proposed method.
Abstract:With the benefit of deep learning techniques, recent researches have made significant progress in image compression artifacts reduction. Despite their improved performances, prevailing methods only focus on learning a mapping from the compressed image to the original one but ignore the intrinsic attributes of the given compressed images, which greatly harms the performance of downstream parsing tasks. Different from these methods, we propose to decouple the intrinsic attributes into two complementary features for artifacts reduction,ie, the compression-insensitive features to regularize the high-level semantic representations during training and the compression-sensitive features to be aware of the compression degree. To achieve this, we first employ adversarial training to regularize the compressed and original encoded features for retaining high-level semantics, and we then develop the compression quality-aware feature encoder for compression-sensitive features. Based on these dual complementary features, we propose a Dual Awareness Guidance Network (DAGN) to utilize these awareness features as transformation guidance during the decoding phase. In our proposed DAGN, we develop a cross-feature fusion module to maintain the consistency of compression-insensitive features by fusing compression-insensitive features into the artifacts reduction baseline. Our method achieves an average 2.06 dB PSNR gains on BSD500, outperforming state-of-the-art methods, and only requires 29.7 ms to process one image on BSD500. Besides, the experimental results on LIVE1 and LIU4K also demonstrate the efficiency, effectiveness, and superiority of the proposed method in terms of quantitative metrics, visual quality, and downstream machine vision tasks.
Abstract:Traffic signal control has a great impact on alleviating traffic congestion in modern cities. Deep reinforcement learning (RL) has been widely used for this task in recent years, demonstrating promising performance but also facing many challenges such as limited performances and sample inefficiency. To handle these challenges, MTLight is proposed to enhance the agent observation with a latent state, which is learned from numerous traffic indicators. Meanwhile, multiple auxiliary and supervisory tasks are constructed to learn the latent state, and two types of embedding latent features, the task-specific feature and task-shared feature, are used to make the latent state more abundant. Extensive experiments conducted on CityFlow demonstrate that MTLight has leading convergence speed and asymptotic performance. We further simulate under peak-hour pattern in all scenarios with increasing control difficulty and the results indicate that MTLight is highly adaptable.
Abstract:As a general method for exploration in deep reinforcement learning (RL), NoisyNet can produce problem-specific exploration strategies. Spiking neural networks (SNNs), due to their binary firing mechanism, have strong robustness to noise, making it difficult to realize efficient exploration with local disturbances. To solve this exploration problem, we propose a noisy spiking actor network (NoisySAN) that introduces time-correlated noise during charging and transmission. Moreover, a noise reduction method is proposed to find a stable policy for the agent. Extensive experimental results demonstrate that our method outperforms the state-of-the-art performance on a wide range of continuous control tasks from OpenAI gym.
Abstract:One important desideratum of lifelong learning aims to discover novel classes from unlabelled data in a continuous manner. The central challenge is twofold: discovering and learning novel classes while mitigating the issue of catastrophic forgetting of established knowledge. To this end, we introduce a new paradigm called Adaptive Discovering and Merging (ADM) to discover novel categories adaptively in the incremental stage and integrate novel knowledge into the model without affecting the original knowledge. To discover novel classes adaptively, we decouple representation learning and novel class discovery, and use Triple Comparison (TC) and Probability Regularization (PR) to constrain the probability discrepancy and diversity for adaptive category assignment. To merge the learned novel knowledge adaptively, we propose a hybrid structure with base and novel branches named Adaptive Model Merging (AMM), which reduces the interference of the novel branch on the old classes to preserve the previous knowledge, and merges the novel branch to the base model without performance loss and parameter growth. Extensive experiments on several datasets show that ADM significantly outperforms existing class-incremental Novel Class Discovery (class-iNCD) approaches. Moreover, our AMM also benefits the class-incremental Learning (class-IL) task by alleviating the catastrophic forgetting problem.
Abstract:With the help of special neuromorphic hardware, spiking neural networks (SNNs) are expected to realize artificial intelligence (AI) with less energy consumption. It provides a promising energy-efficient way for realistic control tasks by combining SNNs with deep reinforcement learning (DRL). In this paper, we focus on the task where the agent needs to learn multi-dimensional deterministic policies to control, which is very common in real scenarios. Recently, the surrogate gradient method has been utilized for training multi-layer SNNs, which allows SNNs to achieve comparable performance with the corresponding deep networks in this task. Most existing spike-based RL methods take the firing rate as the output of SNNs, and convert it to represent continuous action space (i.e., the deterministic policy) through a fully-connected (FC) layer. However, the decimal characteristic of the firing rate brings the floating-point matrix operations to the FC layer, making the whole SNN unable to deploy on the neuromorphic hardware directly. To develop a fully spiking actor network without any floating-point matrix operations, we draw inspiration from the non-spiking interneurons found in insects and employ the membrane voltage of the non-spiking neurons to represent the action. Before the non-spiking neurons, multiple population neurons are introduced to decode different dimensions of actions. Since each population is used to decode a dimension of action, we argue that the neurons in each population should be connected in time domain and space domain. Hence, the intra-layer connections are used in output populations to enhance the representation capacity. Finally, we propose a fully spiking actor network with intra-layer connections (ILC-SAN).
Abstract:The sparsity of Deep Neural Networks is well investigated to maximize the performance and reduce the size of overparameterized networks as possible. Existing methods focus on pruning parameters in the training process by using thresholds and metrics. Meanwhile, feature similarity between different layers has not been discussed sufficiently before, which could be rigorously proved to be highly correlated to the network sparsity in this paper. Inspired by interlayer feature similarity in overparameterized models, we investigate the intrinsic link between network sparsity and interlayer feature similarity. Specifically, we prove that reducing interlayer feature similarity based on Centered Kernel Alignment (CKA) improves the sparsity of the network by using information bottleneck theory. Applying such theory, we propose a plug-and-play CKA-based Sparsity Regularization for sparse network training, dubbed CKA-SR, which utilizes CKA to reduce feature similarity between layers and increase network sparsity. In other words, layers of our sparse network tend to have their own identity compared to each other. Experimentally, we plug the proposed CKA-SR into the training process of sparse network training methods and find that CKA-SR consistently improves the performance of several State-Of-The-Art sparse training methods, especially at extremely high sparsity. Code is included in the supplementary materials.
Abstract:Unsupervised person re-identification has achieved great success through the self-improvement of individual neural networks. However, limited by the lack of diversity of discriminant information, a single network has difficulty learning sufficient discrimination ability by itself under unsupervised conditions. To address this limit, we develop a population-based evolutionary gaming (PEG) framework in which a population of diverse neural networks is trained concurrently through selection, reproduction, mutation, and population mutual learning iteratively. Specifically, the selection of networks to preserve is modeled as a cooperative game and solved by the best-response dynamics, then the reproduction and mutation are implemented by cloning and fluctuating hyper-parameters of networks to learn more diversity, and population mutual learning improves the discrimination of networks by knowledge distillation from each other within the population. In addition, we propose a cross-reference scatter (CRS) to approximately evaluate re-ID models without labeled samples and adopt it as the criterion of network selection in PEG. CRS measures a model's performance by indirectly estimating the accuracy of its predicted pseudo-labels according to the cohesion and separation of the feature space. Extensive experiments demonstrate that (1) CRS approximately measures the performance of models without labeled samples; (2) and PEG produces new state-of-the-art accuracy for person re-identification, indicating the great potential of population-based network cooperative training for unsupervised learning.
Abstract:The sensitivity of deep neural networks to compressed images hinders their usage in many real applications, which means classification networks may fail just after taking a screenshot and saving it as a compressed file. In this paper, we argue that neglected disposable coding parameters stored in compressed files could be picked up to reduce the sensitivity of deep neural networks to compressed images. Specifically, we resort to using one of the representative parameters, quantization steps, to facilitate image classification. Firstly, based on quantization steps, we propose a novel quantization aware confidence (QAC), which is utilized as sample weights to reduce the influence of quantization on network training. Secondly, we utilize quantization steps to alleviate the variance of feature distributions, where a quantization aware batch normalization (QABN) is proposed to replace batch normalization of classification networks. Extensive experiments show that the proposed method significantly improves the performance of classification networks on CIFAR-10, CIFAR-100, and ImageNet. The code is released on https://github.com/LiMaPKU/QSAM.git
Abstract:Few-shot class-incremental learning (FSCIL) aims at learning to classify new classes continually from limited samples without forgetting the old classes. The mainstream framework tackling FSCIL is first to adopt the cross-entropy (CE) loss for training at the base session, then freeze the feature extractor to adapt to new classes. However, in this work, we find that the CE loss is not ideal for the base session training as it suffers poor class separation in terms of representations, which further degrades generalization to novel classes. One tempting method to mitigate this problem is to apply an additional naive supervised contrastive learning (SCL) in the base session. Unfortunately, we find that although SCL can create a slightly better representation separation among different base classes, it still struggles to separate base classes and new classes. Inspired by the observations made, we propose Semantic-Aware Virtual Contrastive model (SAVC), a novel method that facilitates separation between new classes and base classes by introducing virtual classes to SCL. These virtual classes, which are generated via pre-defined transformations, not only act as placeholders for unseen classes in the representation space, but also provide diverse semantic information. By learning to recognize and contrast in the fantasy space fostered by virtual classes, our SAVC significantly boosts base class separation and novel class generalization, achieving new state-of-the-art performance on the three widely-used FSCIL benchmark datasets. Code is available at: https://github.com/zysong0113/SAVC.