Abstract:Question answering on free-form tables (a.k.a. TableQA) is a challenging task because of the flexible structure and the complex schema of tables. Recent studies use Large Language Models (LLMs) for this task, exploiting their capability in understanding the questions and tabular data which are typically given in natural language and contains many textual fields, respectively. While this approach has shown promising results, it overlooks the challenges brought by numerical values which are common in tabular data, while LLMs are known to struggle with such values. We aim to address this issue and answer numerical questions. We propose a model named TabLaP that uses LLMs as a planner rather than an answer generator, exploiting LLMs capability in multi-step reasoning while leaving the actual numerical calculations to a Python interpreter for accurate calculation. Recognizing the inaccurate nature of LLMs, we further make a first attempt to quantify the trustworthiness of the answers produced by TabLaP, such that users can use TabLaP in a regret-aware manner. Experimental results on two benchmark datasets show that TabLaP is substantially more accurate than the state-of-the-art models, improving the answer accuracy by 5.7% and 5.8% on the two datasets, respectively.
Abstract:Detecting beneficial feature interactions is essential in recommender systems, and existing approaches achieve this by examining all the possible feature interactions. However, the cost of examining all the possible higher-order feature interactions is prohibitive (exponentially growing with the order increasing). Hence existing approaches only detect limited order (e.g., combinations of up to four features) beneficial feature interactions, which may miss beneficial feature interactions with orders higher than the limitation. In this paper, we propose a hypergraph neural network based model named HIRS. HIRS is the first work that directly generates beneficial feature interactions of arbitrary orders and makes recommendation predictions accordingly. The number of generated feature interactions can be specified to be much smaller than the number of all the possible interactions and hence, our model admits a much lower running time. To achieve an effective algorithm, we exploit three properties of beneficial feature interactions, and propose deep-infomax-based methods to guide the interaction generation. Our experimental results show that HIRS outperforms state-of-the-art algorithms by up to 5% in terms of recommendation accuracy.
Abstract:User and item attributes are essential side-information; their interactions (i.e., their co-occurrence in the sample data) can significantly enhance prediction accuracy in various recommender systems. We identify two different types of attribute interactions, inner interactions and cross interactions: inner interactions are those between only user attributes or those between only item attributes; cross interactions are those between user attributes and item attributes. Existing models do not distinguish these two types of attribute interactions, which may not be the most effective way to exploit the information carried by the interactions. To address this drawback, we propose a neural Graph Matching based Collaborative Filtering model (GMCF), which effectively captures the two types of attribute interactions through modeling and aggregating attribute interactions in a graph matching structure for recommendation. In our model, the two essential recommendation procedures, characteristic learning and preference matching, are explicitly conducted through graph learning (based on inner interactions) and node matching (based on cross interactions), respectively. Experimental results show that our model outperforms state-of-the-art models. Further studies verify the effectiveness of GMCF in improving the accuracy of recommendation.