Abstract:Video Anomaly Detection (VAD) remains a fundamental yet formidable task in the video understanding community, with promising applications in areas such as information forensics and public safety protection. Due to the rarity and diversity of anomalies, existing methods only use easily collected regular events to model the inherent normality of normal spatial-temporal patterns in an unsupervised manner. Previous studies have shown that existing unsupervised VAD models are incapable of label-independent data offsets (e.g., scene changes) in real-world scenarios and may fail to respond to light anomalies due to the overgeneralization of deep neural networks. Inspired by causality learning, we argue that there exist causal factors that can adequately generalize the prototypical patterns of regular events and present significant deviations when anomalous instances occur. In this regard, we propose Causal Representation Consistency Learning (CRCL) to implicitly mine potential scene-robust causal variable in unsupervised video normality learning. Specifically, building on the structural causal models, we propose scene-debiasing learning and causality-inspired normality learning to strip away entangled scene bias in deep representations and learn causal video normality, respectively. Extensive experiments on benchmarks validate the superiority of our method over conventional deep representation learning. Moreover, ablation studies and extension validation show that the CRCL can cope with label-independent biases in multi-scene settings and maintain stable performance with only limited training data available.
Abstract:Clear monitoring images are crucial for the safe operation of coal mine Internet of Video Things (IoVT) systems. However, low illumination and uneven brightness in underground environments significantly degrade image quality, posing challenges for enhancement methods that often rely on difficult-to-obtain paired reference images. Additionally, there is a trade-off between enhancement performance and computational efficiency on edge devices within IoVT systems.To address these issues, we propose a multimodal image enhancement method tailored for coal mine IoVT, utilizing an ISP-CNN fusion architecture optimized for uneven illumination. This two-stage strategy combines global enhancement with detail optimization, effectively improving image quality, especially in poorly lit areas. A CLIP-based multimodal iterative optimization allows for unsupervised training of the enhancement algorithm. By integrating traditional image signal processing (ISP) with convolutional neural networks (CNN), our approach reduces computational complexity while maintaining high performance, making it suitable for real-time deployment on edge devices.Experimental results demonstrate that our method effectively mitigates uneven brightness and enhances key image quality metrics, with PSNR improvements of 2.9%-4.9%, SSIM by 4.3%-11.4%, and VIF by 4.9%-17.8% compared to seven state-of-the-art algorithms. Simulated coal mine monitoring scenarios validate our method's ability to balance performance and computational demands, facilitating real-time enhancement and supporting safer mining operations.
Abstract:This paper proposes a UAV-assisted forwarding system based on distributed beamforming to enhance age of information (AoI) in Internet of Things (IoT). Specifically, UAVs collect and relay data between sensor nodes (SNs) and the remote base station (BS). However, flight delays increase the AoI and degrade the network performance. To mitigate this, we adopt distributed beamforming to extend the communication range, reduce the flight frequency and ensure the continuous data relay and efficient energy utilization. Then, we formulate an optimization problem to minimize AoI and UAV energy consumption, by jointly optimizing the UAV trajectories and communication schedules. The problem is non-convex and with high dynamic, and thus we propose a deep reinforcement learning (DRL)-based algorithm to solve the problem, thereby enhancing the stability and accelerate convergence speed. Simulation results show that the proposed algorithm effectively addresses the problem and outperforms other benchmark algorithms.
Abstract:Low Earth Orbit (LEO) satellites can be used to assist maritime wireless communications for data transmission across wide-ranging areas. However, extensive coverage of LEO satellites, combined with openness of channels, can cause the communication process to suffer from security risks. This paper presents a low-altitude friendly-jamming LEO satellite-maritime communication system enabled by a unmanned aerial vehicle (UAV) to ensure data security at the physical layer. Since such a system requires trade-off policies that balance the secrecy rate and energy consumption of the UAV to meet evolving scenario demands, we formulate a secure satellite-maritime communication multi-objective optimization problem (SSMCMOP). In order to solve the dynamic and long-term optimization problem, we reformulate it into a Markov decision process. We then propose a transformer-enhanced soft actor critic (TransSAC) algorithm, which is a generative artificial intelligence-enable deep reinforcement learning approach to solve the reformulated problem, so that capturing global dependencies and diversely exploring weights. Simulation results demonstrate that the TransSAC outperforms various baselines, and achieves an optimal secrecy rate while effectively minimizing the energy consumption of the UAV. Moreover, the results find more suitable constraint values for the system.
Abstract:Diffusion models (DMs) have emerged as a powerful class of generative AI models, showing remarkable potential in anomaly detection (AD) tasks across various domains, such as cybersecurity, fraud detection, healthcare, and manufacturing. The intersection of these two fields, termed diffusion models for anomaly detection (DMAD), offers promising solutions for identifying deviations in increasingly complex and high-dimensional data. In this survey, we systematically review recent advances in DMAD research and investigate their capabilities. We begin by presenting the fundamental concepts of AD and DMs, followed by a comprehensive analysis of classic DM architectures including DDPMs, DDIMs, and Score SDEs. We further categorize existing DMAD methods into reconstruction-based, density-based, and hybrid approaches, providing detailed examinations of their methodological innovations. We also explore the diverse tasks across different data modalities, encompassing image, time series, video, and multimodal data analysis. Furthermore, we discuss critical challenges and emerging research directions, including computational efficiency, model interpretability, robustness enhancement, edge-cloud collaboration, and integration with large language models. The collection of DMAD research papers and resources is available at https://github.com/fdjingliu/DMAD.
Abstract:Edge computing has emerged as a key paradigm for deploying deep learning-based object detection in time-sensitive scenarios. However, existing edge detection methods face challenges: 1) difficulty balancing detection precision with lightweight models, 2) limited adaptability of generalized deployment designs, and 3) insufficient real-world validation. To address these issues, we propose the Edge Detection Toolbox (ED-TOOLBOX), which utilizes generalizable plug-and-play components to adapt object detection models for edge environments. Specifically, we introduce a lightweight Reparameterized Dynamic Convolutional Network (Rep-DConvNet) featuring weighted multi-shape convolutional branches to enhance detection performance. Additionally, we design a Sparse Cross-Attention (SC-A) network with a localized-mapping-assisted self-attention mechanism, enabling a well-crafted joint module for adaptive feature transfer. For real-world applications, we incorporate an Efficient Head into the YOLO framework to accelerate edge model optimization. To demonstrate practical impact, we identify a gap in helmet detection -- overlooking band fastening, a critical safety factor -- and create the Helmet Band Detection Dataset (HBDD). Using ED-TOOLBOX-optimized models, we address this real-world task. Extensive experiments validate the effectiveness of ED-TOOLBOX, with edge detection models outperforming six state-of-the-art methods in visual surveillance simulations, achieving real-time and accurate performance. These results highlight ED-TOOLBOX as a superior solution for edge object detection.
Abstract:Facial expressions convey human emotions and can be categorized into macro-expressions (MaEs) and micro-expressions (MiEs) based on duration and intensity. While MaEs are voluntary and easily recognized, MiEs are involuntary, rapid, and can reveal concealed emotions. The integration of facial expression analysis with Internet-of-Thing (IoT) systems has significant potential across diverse scenarios. IoT-enhanced MaE analysis enables real-time monitoring of patient emotions, facilitating improved mental health care in smart healthcare. Similarly, IoT-based MiE detection enhances surveillance accuracy and threat detection in smart security. This work aims at providing a comprehensive overview of research progress in facial expression analysis and explores its integration with IoT systems. We discuss the distinctions between our work and existing surveys, elaborate on advancements in MaE and MiE techniques across various learning paradigms, and examine their potential applications in IoT. We highlight challenges and future directions for the convergence of facial expression-based technologies and IoT systems, aiming to foster innovation in this domain. By presenting recent developments and practical applications, this study offers a systematic understanding of how facial expression analysis can enhance IoT systems in healthcare, security, and beyond.
Abstract:Unmanned aerial vehicles (UAVs) have gained considerable attention as a platform for establishing aerial wireless networks and communications. However, the line-of-sight dominance in air-to-ground communications often leads to significant interference with terrestrial networks, reducing communication efficiency among terrestrial terminals. This paper explores a novel uplink interference mitigation approach based on the collaborative beamforming (CB) method in multi-UAV network systems. Specifically, the UAV swarm forms a UAV-enabled virtual antenna array (VAA) to achieve the transmissions of gathered data to multiple base stations (BSs) for data backup and distributed processing. However, there is a trade-off between the effectiveness of CB-based interference mitigation and the energy conservation of UAVs. Thus, by jointly optimizing the excitation current weights and hover position of UAVs as well as the sequence of data transmission to various BSs, we formulate an uplink interference mitigation multi-objective optimization problem (MOOP) to decrease interference affection, enhance transmission efficiency, and improve energy efficiency, simultaneously. In response to the computational demands of the formulated problem, we introduce an evolutionary computation method, namely chaotic non-dominated sorting genetic algorithm II (CNSGA-II) with multiple improved operators. The proposed CNSGA-II efficiently addresses the formulated MOOP, outperforming several other comparative algorithms, as evidenced by the outcomes of the simulations. Moreover, the proposed CB-based uplink interference mitigation approach can significantly reduce the interference caused by UAVs to non-receiving BSs.
Abstract:As the volume of image data grows, data-oriented cloud computing in Internet of Video Things (IoVT) systems encounters latency issues. Task-oriented edge computing addresses this by shifting data analysis to the edge. However, limited computational power of edge devices poses challenges for executing visual tasks. Existing methods struggle to balance high model performance with low resource consumption; lightweight neural networks often underperform, while device-specific models designed by Neural Architecture Search (NAS) fail to adapt to heterogeneous devices. For these issues, we propose a novel co-design framework to optimize neural network architecture and deployment strategies during inference for high-throughput. Specifically, it implements a dynamic model structure based on re-parameterization, coupled with a Roofline-based model partitioning strategy to enhance the computational performance of edge devices. We also employ a multi-objective co-optimization approach to balance throughput and accuracy. Additionally, we derive mathematical consistency and convergence of partitioned models. Experimental results demonstrate significant improvements in throughput (12.05\% on MNIST, 18.83\% on ImageNet) and superior classification accuracy compared to baseline algorithms. Our method consistently achieves stable performance across different devices, underscoring its adaptability. Simulated experiments further confirm its efficacy in high-accuracy, real-time detection for small objects in IoVT systems.
Abstract:Since the invention of GPT2--1.5B in 2019, large language models (LLMs) have transitioned from specialized models to versatile foundation models. The LLMs exhibit impressive zero-shot ability, however, require fine-tuning on local datasets and significant resources for deployment. Traditional fine-tuning techniques with the first-order optimizers require substantial GPU memory that exceeds mainstream hardware capability. Therefore, memory-efficient methods are motivated to be investigated. Model compression techniques can reduce energy consumption, operational costs, and environmental impact so that to support sustainable artificial intelligence advancements. Additionally, large-scale foundation models have expanded to create images, audio, videos, and multi-modal contents, further emphasizing the need for efficient deployment. Therefore, we are motivated to present a comprehensive overview of the prevalent memory-efficient fine-tuning methods over the network edge. We also review the state-of-the-art literatures on model compression to provide a vision on deploying LLMs over the network edge.