Nankai University
Abstract:Cooperative path planning, a crucial aspect of multi-agent systems research, serves a variety of sectors, including military, agriculture, and industry. Many existing algorithms, however, come with certain limitations, such as simplified kinematic models and inadequate support for multiple group scenarios. Focusing on the planning problem associated with a nonholonomic Ackermann model for Unmanned Ground Vehicles (UGV), we propose a leaderless, hierarchical Search-Based Cooperative Motion Planning (SCMP) method. The high-level utilizes a binary conflict search tree to minimize runtime, while the low-level fabricates kinematically feasible, collision-free paths that are shape-constrained. Our algorithm can adapt to scenarios featuring multiple groups with different shapes, outlier agents, and elaborate obstacles. We conduct algorithm comparisons, performance testing, simulation, and real-world testing, verifying the effectiveness and applicability of our algorithm. The implementation of our method will be open-sourced at https://github.com/WYCUniverStar/SCMP.
Abstract:Shadows can originate from occlusions in both direct and indirect illumination. Although most current shadow removal research focuses on shadows caused by direct illumination, shadows from indirect illumination are often just as pervasive, particularly in indoor scenes. A significant challenge in removing shadows from indirect illumination is obtaining shadow-free images to train the shadow removal network. To overcome this challenge, we propose a novel rendering pipeline for generating shadowed and shadow-free images under direct and indirect illumination, and create a comprehensive synthetic dataset that contains over 30,000 image pairs, covering various object types and lighting conditions. We also propose an innovative shadow removal network that explicitly integrates semantic and geometric priors through concatenation and attention mechanisms. The experiments show that our method outperforms state-of-the-art shadow removal techniques and can effectively generalize to indoor and outdoor scenes under various lighting conditions, enhancing the overall effectiveness and applicability of shadow removal methods.
Abstract:This letter presents a novel multi-robot task allocation and path planning method that considers robots' maximum range constraints in large-sized workspaces, enabling robots to complete the assigned tasks within their range limits. Firstly, we developed a fast path planner to solve global paths efficiently. Subsequently, we propose an innovative auction-based approach that integrates our path planner into the auction phase for reward computation while considering the robots' range limits. This method accounts for extra obstacle-avoiding travel distances rather than ideal straight-line distances, resolving the coupling between task allocation and path planning. Additionally, to avoid redundant computations during iterations, we implemented a lazy auction strategy to speed up the convergence of the task allocation. Finally, we validated the proposed method's effectiveness and application potential through extensive simulation and real-world experiments. The implementation code for our method will be available at https://github.com/wuuya1/RangeTAP.
Abstract:Recently, federated learning (FL) has achieved wide successes for diverse privacy-sensitive applications without sacrificing the sensitive private information of clients. However, the data quality of client datasets can not be guaranteed since corresponding annotations of different clients often contain complex label noise of varying degrees, which inevitably causes the performance degradation. Intuitively, the performance degradation is dominated by clients with higher noise rates since their trained models contain more misinformation from data, thus it is necessary to devise an effective optimization scheme to mitigate the negative impacts of these noisy clients. In this work, we propose a two-stage framework FedELC to tackle this complicated label noise issue. The first stage aims to guide the detection of noisy clients with higher label noise, while the second stage aims to correct the labels of noisy clients' data via an end-to-end label correction framework which is achieved by learning possible ground-truth labels of noisy clients' datasets via back propagation. We implement sixteen related methods and evaluate five datasets with three types of complicated label noise scenarios for a comprehensive comparison. Extensive experimental results demonstrate our proposed framework achieves superior performance than its counterparts for different scenarios. Additionally, we effectively improve the data quality of detected noisy clients' local datasets with our label correction framework. The code is available at https://github.com/Sprinter1999/FedELC.
Abstract:Histopathology image analysis plays a crucial role in cancer diagnosis. However, training a clinically applicable segmentation algorithm requires pathologists to engage in labour-intensive labelling. In contrast, weakly supervised learning methods, which only require coarse-grained labels at the image level, can significantly reduce the labeling efforts. Unfortunately, while these methods perform reasonably well in slide-level prediction, their ability to locate cancerous regions, which is essential for many clinical applications, remains unsatisfactory. Previously, we proposed CAMEL, which achieves comparable results to those of fully supervised baselines in pixel-level segmentation. However, CAMEL requires 1,280x1,280 image-level binary annotations for positive WSIs. Here, we present CAMEL2, by introducing a threshold of the cancerous ratio for positive bags, it allows us to better utilize the information, consequently enabling us to scale up the image-level setting from 1,280x1,280 to 5,120x5,120 while maintaining the accuracy. Our results with various datasets, demonstrate that CAMEL2, with the help of 5,120x5,120 image-level binary annotations, which are easy to annotate, achieves comparable performance to that of a fully supervised baseline in both instance- and slide-level classifications.
Abstract:Neural radiance fields (NeRF) based methods have shown amazing performance in synthesizing 3D-consistent photographic images, but fail to generate multi-view portrait drawings. The key is that the basic assumption of these methods -- a surface point is consistent when rendered from different views -- doesn't hold for drawings. In a portrait drawing, the appearance of a facial point may changes when viewed from different angles. Besides, portrait drawings usually present little 3D information and suffer from insufficient training data. To combat this challenge, in this paper, we propose a Semantic-Aware GEnerator (SAGE) for synthesizing multi-view portrait drawings. Our motivation is that facial semantic labels are view-consistent and correlate with drawing techniques. We therefore propose to collaboratively synthesize multi-view semantic maps and the corresponding portrait drawings. To facilitate training, we design a semantic-aware domain translator, which generates portrait drawings based on features of photographic faces. In addition, use data augmentation via synthesis to mitigate collapsed results. We apply SAGE to synthesize multi-view portrait drawings in diverse artistic styles. Experimental results show that SAGE achieves significantly superior or highly competitive performance, compared to existing 3D-aware image synthesis methods. The codes are available at https://github.com/AiArt-HDU/SAGE.
Abstract:We present a novel framework for exemplar based image translation. Recent advanced methods for this task mainly focus on establishing cross-domain semantic correspondence, which sequentially dominates image generation in the manner of local style control. Unfortunately, cross-domain semantic matching is challenging; and matching errors ultimately degrade the quality of generated images. To overcome this challenge, we improve the accuracy of matching on the one hand, and diminish the role of matching in image generation on the other hand. To achieve the former, we propose a masked and adaptive transformer (MAT) for learning accurate cross-domain correspondence, and executing context-aware feature augmentation. To achieve the latter, we use source features of the input and global style codes of the exemplar, as supplementary information, for decoding an image. Besides, we devise a novel contrastive style learning method, for acquire quality-discriminative style representations, which in turn benefit high-quality image generation. Experimental results show that our method, dubbed MATEBIT, performs considerably better than state-of-the-art methods, in diverse image translation tasks. The codes are available at \url{https://github.com/AiArt-HDU/MATEBIT}.
Abstract:Joint Super-Resolution and Inverse Tone-Mapping (joint SR-ITM) aims to increase the resolution and dynamic range of low-resolution and standard dynamic range images.Recent methods mainly resort to image decomposition techniques with the multi-branch network architecture.However, the rigid decomposition employed by these methods largely restricts their power on diverse images.To exploit its potential power, in this paper, we generalize the decomposition mechanism from the image domain to the broader feature domain. To this end, we propose a lightweight Feature Decomposition Aggregation Network (FDAN). In particular, we design a Feature Decomposition Block (FDB), which can achieve learnable separation of feature details and contrasts.By cascading FDBs, we can build up a Hierarchical Feature Decomposition Group for powerful multi-level feature decomposition.Moreover, we collect a new benchmark dataset for joint SR-ITM, \ie, SRITM-4K, which is large-scale and provides versatile scenarios for sufficient model training and evaluation.Experimental results on two benchmark datasets demonstrate that our FDAN is efficient and outperforms previous methods on joint SR-ITM.Our code and dataset will be publicly released.
Abstract:In this paper, a novel deep learning framework is proposed for temporal super-resolution simulation of blood vessel flows, in which a high-temporal-resolution time-varying blood vessel flow simulation is generated from a low-temporal-resolution flow simulation result. In our framework, point-cloud is used to represent the complex blood vessel model, resistance-time aided PointNet model is proposed for extracting the time-space features of the time-varying flow field, and finally we can reconstruct the high-accuracy and high-resolution flow field through the Decoder module. In particular, the amplitude loss and the orientation loss of the velocity are proposed from the vector characteristics of the velocity. And the combination of these two metrics constitutes the final loss function for network training. Several examples are given to illustrate the effective and efficiency of the proposed framework for temporal super-resolution simulation of blood vessel flows.
Abstract:A key challenge in the task of human pose and shape estimation is occlusion, including self-occlusions, object-human occlusions, and inter-person occlusions. The lack of diverse and accurate pose and shape training data becomes a major bottleneck, especially for scenes with occlusions in the wild. In this paper, we focus on the estimation of human pose and shape in the case of inter-person occlusions, while also handling object-human occlusions and self-occlusion. We propose a framework that synthesizes occlusion-aware silhouette and 2D keypoints data and directly regress to the SMPL pose and shape parameters. A neural 3D mesh renderer is exploited to enable silhouette supervision on the fly, which contributes to great improvements in shape estimation. In addition, keypoints-and-silhouette-driven training data in panoramic viewpoints are synthesized to compensate for the lack of viewpoint diversity in any existing dataset. Experimental results show that we are among state-of-the-art on the 3DPW dataset in terms of pose accuracy and evidently outperform the rank-1 method in terms of shape accuracy. Top performance is also achieved on SSP-3D in terms of shape prediction accuracy.