Abstract:Cooperative path planning, a crucial aspect of multi-agent systems research, serves a variety of sectors, including military, agriculture, and industry. Many existing algorithms, however, come with certain limitations, such as simplified kinematic models and inadequate support for multiple group scenarios. Focusing on the planning problem associated with a nonholonomic Ackermann model for Unmanned Ground Vehicles (UGV), we propose a leaderless, hierarchical Search-Based Cooperative Motion Planning (SCMP) method. The high-level utilizes a binary conflict search tree to minimize runtime, while the low-level fabricates kinematically feasible, collision-free paths that are shape-constrained. Our algorithm can adapt to scenarios featuring multiple groups with different shapes, outlier agents, and elaborate obstacles. We conduct algorithm comparisons, performance testing, simulation, and real-world testing, verifying the effectiveness and applicability of our algorithm. The implementation of our method will be open-sourced at https://github.com/WYCUniverStar/SCMP.
Abstract:Diffusion models play a pivotal role in contemporary generative modeling, claiming state-of-the-art performance across various domains. Despite their superior sample quality, mainstream diffusion-based stochastic samplers like DDPM often require a large number of score function evaluations, incurring considerably higher computational cost compared to single-step generators like generative adversarial networks. While several acceleration methods have been proposed in practice, the theoretical foundations for accelerating diffusion models remain underexplored. In this paper, we propose and analyze a training-free acceleration algorithm for SDE-style diffusion samplers, based on the stochastic Runge-Kutta method. The proposed sampler provably attains $\varepsilon^2$ error -- measured in KL divergence -- using $\widetilde O(d^{3/2} / \varepsilon)$ score function evaluations (for sufficiently small $\varepsilon$), strengthening the state-of-the-art guarantees $\widetilde O(d^{3} / \varepsilon)$ in terms of dimensional dependency. Numerical experiments validate the efficiency of the proposed method.
Abstract:This letter presents a novel multi-robot task allocation and path planning method that considers robots' maximum range constraints in large-sized workspaces, enabling robots to complete the assigned tasks within their range limits. Firstly, we developed a fast path planner to solve global paths efficiently. Subsequently, we propose an innovative auction-based approach that integrates our path planner into the auction phase for reward computation while considering the robots' range limits. This method accounts for extra obstacle-avoiding travel distances rather than ideal straight-line distances, resolving the coupling between task allocation and path planning. Additionally, to avoid redundant computations during iterations, we implemented a lazy auction strategy to speed up the convergence of the task allocation. Finally, we validated the proposed method's effectiveness and application potential through extensive simulation and real-world experiments. The implementation code for our method will be available at https://github.com/wuuya1/RangeTAP.
Abstract:Generating human mobility trajectories is of great importance to solve the lack of large-scale trajectory data in numerous applications, which is caused by privacy concerns. However, existing mobility trajectory generation methods still require real-world human trajectories centrally collected as the training data, where there exists an inescapable risk of privacy leakage. To overcome this limitation, in this paper, we propose PateGail, a privacy-preserving imitation learning model to generate mobility trajectories, which utilizes the powerful generative adversary imitation learning model to simulate the decision-making process of humans. Further, in order to protect user privacy, we train this model collectively based on decentralized mobility data stored in user devices, where personal discriminators are trained locally to distinguish and reward the real and generated human trajectories. In the training process, only the generated trajectories and their rewards obtained based on personal discriminators are shared between the server and devices, whose privacy is further preserved by our proposed perturbation mechanisms with theoretical proof to satisfy differential privacy. Further, to better model the human decision-making process, we propose a novel aggregation mechanism of the rewards obtained from personal discriminators. We theoretically prove that under the reward obtained based on the aggregation mechanism, our proposed model maximizes the lower bound of the discounted total rewards of users. Extensive experiments show that the trajectories generated by our model are able to resemble real-world trajectories in terms of five key statistical metrics, outperforming state-of-the-art algorithms by over 48.03%. Furthermore, we demonstrate that the synthetic trajectories are able to efficiently support practical applications, including mobility prediction and location recommendation.
Abstract:Tactile and textile skin technologies have become increasingly important for enhancing human-robot interaction and allowing robots to adapt to different environments. Despite notable advancements, there are ongoing challenges in skin signal processing, particularly in achieving both accuracy and speed in dynamic touch sensing. This paper introduces a new framework that poses the touch sensing problem as an estimation problem of resistive sensory arrays. Utilizing a Regularized Least Squares objective function which estimates the resistance distribution of the skin. We enhance the touch sensing accuracy and mitigate the ghosting effects, where false or misleading touches may be registered. Furthermore, our study presents a streamlined skin design that simplifies manufacturing processes without sacrificing performance. Experimental outcomes substantiate the effectiveness of our method, showing 26.9% improvement in multi-touch force-sensing accuracy for the tactile skin.
Abstract:Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties. Such information is coined as guidance. For example, in text-to-image synthesis, text input is encoded as guidance to generate semantically aligned images. Proper guidance inputs are closely tied to the performance of diffusion models. A common observation is that strong guidance promotes a tight alignment to the task-specific information, while reducing the diversity of the generated samples. In this paper, we provide the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models. Under mild conditions, we prove that incorporating diffusion guidance not only boosts classification confidence but also diminishes distribution diversity, leading to a reduction in the differential entropy of the output distribution. Our analysis covers the widely adopted sampling schemes including DDPM and DDIM, and leverages comparison inequalities for differential equations as well as the Fokker-Planck equation that characterizes the evolution of probability density function, which may be of independent theoretical interest.
Abstract:We analyze the statistical properties of generalized cross-validation (GCV) and leave-one-out cross-validation (LOOCV) applied to early-stopped gradient descent (GD) in high-dimensional least squares regression. We prove that GCV is generically inconsistent as an estimator of the prediction risk of early-stopped GD, even for a well-specified linear model with isotropic features. In contrast, we show that LOOCV converges uniformly along the GD trajectory to the prediction risk. Our theory requires only mild assumptions on the data distribution and does not require the underlying regression function to be linear. Furthermore, by leveraging the individual LOOCV errors, we construct consistent estimators for the entire prediction error distribution along the GD trajectory and consistent estimators for a wide class of error functionals. This in particular enables the construction of pathwise prediction intervals based on GD iterates that have asymptotically correct nominal coverage conditional on the training data.
Abstract:We investigate the power iteration algorithm for the tensor PCA model introduced in Richard and Montanari (2014). Previous work studying the properties of tensor power iteration is either limited to a constant number of iterations, or requires a non-trivial data-independent initialization. In this paper, we move beyond these limitations and analyze the dynamics of randomly initialized tensor power iteration up to polynomially many steps. Our contributions are threefold: First, we establish sharp bounds on the number of iterations required for power method to converge to the planted signal, for a broad range of the signal-to-noise ratios. Second, our analysis reveals that the actual algorithmic threshold for power iteration is smaller than the one conjectured in literature by a polylog(n) factor, where n is the ambient dimension. Finally, we propose a simple and effective stopping criterion for power iteration, which provably outputs a solution that is highly correlated with the true signal. Extensive numerical experiments verify our theoretical results.
Abstract:We investigate the approximation efficiency of score functions by deep neural networks in diffusion-based generative modeling. While existing approximation theories utilize the smoothness of score functions, they suffer from the curse of dimensionality for intrinsically high-dimensional data. This limitation is pronounced in graphical models such as Markov random fields, common for image distributions, where the approximation efficiency of score functions remains unestablished. To address this, we observe score functions can often be well-approximated in graphical models through variational inference denoising algorithms. Furthermore, these algorithms are amenable to efficient neural network representation. We demonstrate this in examples of graphical models, including Ising models, conditional Ising models, restricted Boltzmann machines, and sparse encoding models. Combined with off-the-shelf discretization error bounds for diffusion-based sampling, we provide an efficient sample complexity bound for diffusion-based generative modeling when the score function is learned by deep neural networks.
Abstract:We present ImageReward -- the first general-purpose text-to-image human preference reward model -- to address various prevalent issues in generative models and align them with human values and preferences. Its training is based on our systematic annotation pipeline that covers both the rating and ranking components, collecting a dataset of 137k expert comparisons to date. In human evaluation, ImageReward outperforms existing scoring methods (e.g., CLIP by 38.6\%), making it a promising automatic metric for evaluating and improving text-to-image synthesis. The reward model is publicly available via the \texttt{image-reward} package at \url{https://github.com/THUDM/ImageReward}.