Abstract:Deep learning-based speech enhancement methods have significantly improved speech quality and intelligibility. Convolutional neural networks (CNNs) have been proven to be essential components of many high-performance models. In this paper, we introduce adaptive convolution, an efficient and versatile convolutional module that enhances the model's capability to adaptively represent speech signals. Adaptive convolution performs frame-wise causal dynamic convolution, generating time-varying kernels for each frame by assembling multiple parallel candidate kernels. A Lightweight attention mechanism leverages both current and historical information to assign adaptive weights to each candidate kernel, guiding their aggregation. This enables the convolution operation to adapt to frame-level speech spectral features, leading to more efficient extraction and reconstruction. Experimental results on various CNN-based models demonstrate that adaptive convolution significantly improves the performance with negligible increases in computational complexity, especially for lightweight models. Furthermore, we propose the adaptive convolutional recurrent network (AdaptCRN), an ultra-lightweight model that incorporates adaptive convolution and an efficient encoder-decoder design, achieving superior performance compared to models with similar or even higher computational costs.
Abstract:Oracle character recognition-an analysis of ancient Chinese inscriptions found on oracle bones-has become a pivotal field intersecting archaeology, paleography, and historical cultural studies. Traditional methods of oracle character recognition have relied heavily on manual interpretation by experts, which is not only labor-intensive but also limits broader accessibility to the general public. With recent breakthroughs in pattern recognition and deep learning, there is a growing movement towards the automation of oracle character recognition (OrCR), showing considerable promise in tackling the challenges inherent to these ancient scripts. However, a comprehensive understanding of OrCR still remains elusive. Therefore, this paper presents a systematic and structured survey of the current landscape of OrCR research. We commence by identifying and analyzing the key challenges of OrCR. Then, we provide an overview of the primary benchmark datasets and digital resources available for OrCR. A review of contemporary research methodologies follows, in which their respective efficacies, limitations, and applicability to the complex nature of oracle characters are critically highlighted and examined. Additionally, our review extends to ancillary tasks associated with OrCR across diverse disciplines, providing a broad-spectrum analysis of its applications. We conclude with a forward-looking perspective, proposing potential avenues for future investigations that could yield significant advancements in the field.
Abstract:Histopathology image analysis plays a crucial role in cancer diagnosis. However, training a clinically applicable segmentation algorithm requires pathologists to engage in labour-intensive labelling. In contrast, weakly supervised learning methods, which only require coarse-grained labels at the image level, can significantly reduce the labeling efforts. Unfortunately, while these methods perform reasonably well in slide-level prediction, their ability to locate cancerous regions, which is essential for many clinical applications, remains unsatisfactory. Previously, we proposed CAMEL, which achieves comparable results to those of fully supervised baselines in pixel-level segmentation. However, CAMEL requires 1,280x1,280 image-level binary annotations for positive WSIs. Here, we present CAMEL2, by introducing a threshold of the cancerous ratio for positive bags, it allows us to better utilize the information, consequently enabling us to scale up the image-level setting from 1,280x1,280 to 5,120x5,120 while maintaining the accuracy. Our results with various datasets, demonstrate that CAMEL2, with the help of 5,120x5,120 image-level binary annotations, which are easy to annotate, achieves comparable performance to that of a fully supervised baseline in both instance- and slide-level classifications.