Abstract:Handheld ultrasound devices face usage limitations due to user inexperience and cannot benefit from supervised deep learning without extensive expert annotations. Moreover, the models trained on standard ultrasound device data are constrained by training data distribution and perform poorly when directly applied to handheld device data. In this study, we propose the Training-free Image Style Alignment (TISA) framework to align the style of handheld device data to those of standard devices. The proposed TISA can directly infer handheld device images without extra training and is suited for clinical applications. We show that TISA performs better and more stably in medical detection and segmentation tasks for handheld device data. We further validate TISA as the clinical model for automatic measurements of spinal curvature and carotid intima-media thickness. The automatic measurements agree well with manual measurements made by human experts and the measurement errors remain within clinically acceptable ranges. We demonstrate the potential for TISA to facilitate automatic diagnosis on handheld ultrasound devices and expedite their eventual widespread use.
Abstract:The recent development of artificial intelligence (AI) technology, especially the advance of deep neural network (DNN) technology, has revolutionized many fields. While DNN plays a central role in modern AI technology, it has been rarely used in sequencing data analysis due to challenges brought by high-dimensional sequencing data (e.g., overfitting). Moreover, due to the complexity of neural networks and their unknown limiting distributions, building association tests on neural networks for genetic association analysis remains a great challenge. To address these challenges and fill the important gap of using AI in high-dimensional sequencing data analysis, we introduce a new kernel-based neural network (KNN) test for complex association analysis of sequencing data. The test is built on our previously developed KNN framework, which uses random effects to model the overall effects of high-dimensional genetic data and adopts kernel-based neural network structures to model complex genotype-phenotype relationships. Based on KNN, a Wald-type test is then introduced to evaluate the joint association of high-dimensional genetic data with a disease phenotype of interest, considering non-linear and non-additive effects (e.g., interaction effects). Through simulations, we demonstrated that our proposed method attained higher power compared to the sequence kernel association test (SKAT), especially in the presence of non-linear and interaction effects. Finally, we apply the methods to the whole genome sequencing (WGS) dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, investigating new genes associated with the hippocampal volume change over time.
Abstract:The advent of artificial intelligence, especially the progress of deep neural networks, is expected to revolutionize genetic research and offer unprecedented potential to decode the complex relationships between genetic variants and disease phenotypes, which could mark a significant step toward improving our understanding of the disease etiology. While deep neural networks hold great promise for genetic association analysis, limited research has been focused on developing neural-network-based tests to dissect complex genotype-phenotype associations. This complexity arises from the opaque nature of neural networks and the absence of defined limiting distributions. We have previously developed a kernel-based neural network model (KNN) that synergizes the strengths of linear mixed models with conventional neural networks. KNN adopts a computationally efficient minimum norm quadratic unbiased estimator (MINQUE) algorithm and uses KNN structure to capture the complex relationship between large-scale sequencing data and a disease phenotype of interest. In the KNN framework, we introduce a MINQUE-based test to assess the joint association of genetic variants with the phenotype, which considers non-linear and non-additive effects and follows a mixture of chi-square distributions. We also construct two additional tests to evaluate and interpret linear and non-linear/non-additive genetic effects, including interaction effects. Our simulations show that our method consistently controls the type I error rate under various conditions and achieves greater power than a commonly used sequence kernel association test (SKAT), especially when involving non-linear and interaction effects. When applied to real data from the UK Biobank, our approach identified genes associated with hippocampal volume, which can be further replicated and evaluated for their role in the pathogenesis of Alzheimer's disease.
Abstract:Facial sketch synthesis (FSS) aims to generate a vivid sketch portrait from a given facial photo. Existing FSS methods merely rely on 2D representations of facial semantic or appearance. However, professional human artists usually use outlines or shadings to covey 3D geometry. Thus facial 3D geometry (e.g. depth map) is extremely important for FSS. Besides, different artists may use diverse drawing techniques and create multiple styles of sketches; but the style is globally consistent in a sketch. Inspired by such observations, in this paper, we propose a novel Human-Inspired Dynamic Adaptation (HIDA) method. Specially, we propose to dynamically modulate neuron activations based on a joint consideration of both facial 3D geometry and 2D appearance, as well as globally consistent style control. Besides, we use deformable convolutions at coarse-scales to align deep features, for generating abstract and distinct outlines. Experiments show that HIDA can generate high-quality sketches in multiple styles, and significantly outperforms previous methods, over a large range of challenging faces. Besides, HIDA allows precise style control of the synthesized sketch, and generalizes well to natural scenes and other artistic styles. Our code and results have been released online at: https://github.com/AiArt-HDU/HIDA.
Abstract:Neural radiance fields (NeRF) based methods have shown amazing performance in synthesizing 3D-consistent photographic images, but fail to generate multi-view portrait drawings. The key is that the basic assumption of these methods -- a surface point is consistent when rendered from different views -- doesn't hold for drawings. In a portrait drawing, the appearance of a facial point may changes when viewed from different angles. Besides, portrait drawings usually present little 3D information and suffer from insufficient training data. To combat this challenge, in this paper, we propose a Semantic-Aware GEnerator (SAGE) for synthesizing multi-view portrait drawings. Our motivation is that facial semantic labels are view-consistent and correlate with drawing techniques. We therefore propose to collaboratively synthesize multi-view semantic maps and the corresponding portrait drawings. To facilitate training, we design a semantic-aware domain translator, which generates portrait drawings based on features of photographic faces. In addition, use data augmentation via synthesis to mitigate collapsed results. We apply SAGE to synthesize multi-view portrait drawings in diverse artistic styles. Experimental results show that SAGE achieves significantly superior or highly competitive performance, compared to existing 3D-aware image synthesis methods. The codes are available at https://github.com/AiArt-HDU/SAGE.
Abstract:We present a novel framework for exemplar based image translation. Recent advanced methods for this task mainly focus on establishing cross-domain semantic correspondence, which sequentially dominates image generation in the manner of local style control. Unfortunately, cross-domain semantic matching is challenging; and matching errors ultimately degrade the quality of generated images. To overcome this challenge, we improve the accuracy of matching on the one hand, and diminish the role of matching in image generation on the other hand. To achieve the former, we propose a masked and adaptive transformer (MAT) for learning accurate cross-domain correspondence, and executing context-aware feature augmentation. To achieve the latter, we use source features of the input and global style codes of the exemplar, as supplementary information, for decoding an image. Besides, we devise a novel contrastive style learning method, for acquire quality-discriminative style representations, which in turn benefit high-quality image generation. Experimental results show that our method, dubbed MATEBIT, performs considerably better than state-of-the-art methods, in diverse image translation tasks. The codes are available at \url{https://github.com/AiArt-HDU/MATEBIT}.
Abstract:Neural networks (NN) play a central role in modern Artificial intelligence (AI) technology and has been successfully used in areas such as natural language processing and image recognition. While majority of NN applications focus on prediction and classification, there are increasing interests in studying statistical inference of neural networks. The study of NN statistical inference can enhance our understanding of NN statistical proprieties. Moreover, it can facilitate the NN-based hypothesis testing that can be applied to hypothesis-driven clinical and biomedical research. In this paper, we propose a sieve quasi-likelihood ratio test based on NN with one hidden layer for testing complex associations. The test statistic has asymptotic chi-squared distribution, and therefore it is computationally efficient and easy for implementation in real data analysis. The validity of the asymptotic distribution is investigated via simulations. Finally, we demonstrate the use of the proposed test by performing a genetic association analysis of the sequencing data from Alzheimer's Disease Neuroimaging Initiative (ADNI).