Abstract:Shadows can originate from occlusions in both direct and indirect illumination. Although most current shadow removal research focuses on shadows caused by direct illumination, shadows from indirect illumination are often just as pervasive, particularly in indoor scenes. A significant challenge in removing shadows from indirect illumination is obtaining shadow-free images to train the shadow removal network. To overcome this challenge, we propose a novel rendering pipeline for generating shadowed and shadow-free images under direct and indirect illumination, and create a comprehensive synthetic dataset that contains over 30,000 image pairs, covering various object types and lighting conditions. We also propose an innovative shadow removal network that explicitly integrates semantic and geometric priors through concatenation and attention mechanisms. The experiments show that our method outperforms state-of-the-art shadow removal techniques and can effectively generalize to indoor and outdoor scenes under various lighting conditions, enhancing the overall effectiveness and applicability of shadow removal methods.
Abstract:Large Language Models (LLMs) have emerged as powerful tools for tackling complex Operations Research (OR) problem by providing the capacity in automating optimization modeling. However, current methodologies heavily rely on prompt engineering (e.g., multi-agent cooperation) with proprietary LLMs, raising data privacy concerns that could be prohibitive in industry applications. To tackle this issue, we propose training open-source LLMs for optimization modeling. We identify four critical requirements for the training dataset of OR LLMs, design and implement OR-Instruct, a semi-automated process for creating synthetic data tailored to specific requirements. We also introduce the IndustryOR benchmark, the first industrial benchmark for testing LLMs on solving real-world OR problems. We apply the data from OR-Instruct to various open-source LLMs of 7b size (termed as ORLMs), resulting in a significantly improved capability for optimization modeling. Our best-performing ORLM achieves state-of-the-art performance on the NL4OPT, MAMO, and IndustryOR benchmarks. Our code and data are available at \url{https://github.com/Cardinal-Operations/ORLM}.
Abstract:The success of pretrain-finetune paradigm brings about the release of numerous model weights. In this case, merging models finetuned on different tasks to enable a single model with multi-task capabilities is gaining increasing attention for its practicability. Existing model merging methods usually suffer from (1) significant performance degradation or (2) requiring tuning by additional data or training. In this paper, we rethink and analyze the existing model merging paradigm. We discover that using a single model's weights can hardly simulate all the models' performance. To tackle this issue, we propose Elect, Mask & Rescale-Merging (EMR-Merging). We first (a) elect a unified model from all the model weights and then (b) generate extremely lightweight task-specific modulators, including masks and rescalers, to align the direction and magnitude between the unified model and each specific model, respectively. EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance. We find that EMR-Merging shows outstanding performance compared to existing merging methods under different classical and newly-established settings, including merging different numbers of vision models (up to 30), NLP models, PEFT models, and multi-modal models.
Abstract:This work targets to merge various Vision Transformers (ViTs) trained on different tasks (i.e., datasets with different object categories) or domains (i.e., datasets with the same categories but different environments) into one unified model, yielding still good performance on each task or domain. Previous model merging works focus on either CNNs or NLP models, leaving the ViTs merging research untouched. To fill this gap, we first explore and find that existing model merging methods cannot well handle the merging of the whole ViT models and still have improvement space. To enable the merging of the whole ViT, we propose a simple-but-effective gating network that can both merge all kinds of layers (e.g., Embedding, Norm, Attention, and MLP) and select the suitable classifier. Specifically, the gating network is trained by unlabeled datasets from all the tasks (domains), and predicts the probability of which task (domain) the input belongs to for merging the models during inference. To further boost the performance of the merged model, especially when the difficulty of merging tasks increases, we design a novel metric of model weight similarity, and utilize it to realize controllable and combined weight merging. Comprehensive experiments on kinds of newly established benchmarks, validate the superiority of the proposed ViT merging framework for different tasks and domains. Our method can even merge beyond 10 ViT models from different vision tasks with a negligible effect on the performance of each task.
Abstract:Supervised object detection methods provide subpar performance when applied to Foreign Object Debris (FOD) detection because FOD could be arbitrary objects according to the Federal Aviation Administration (FAA) specification. Current supervised object detection algorithms require datasets that contain annotated examples of every to-be-detected object. While a large and expensive dataset could be developed to include common FOD examples, it is infeasible to collect all possible FOD examples in the dataset representation because of the open-ended nature of FOD. Limitations of the dataset could cause FOD detection systems driven by those supervised algorithms to miss certain FOD, which can become dangerous to airport operations. To this end, this paper presents a self-supervised FOD localization by learning to predict the runway images, which avoids the enumeration of FOD annotation examples. The localization method utilizes the Vision Transformer (ViT) to improve localization performance. The experiments show that the method successfully detects arbitrary FOD in real-world runway situations. The paper also provides an extension to the localization result to perform classification; a feature that can be useful to downstream tasks. To train the localization, this paper also presents a simple and realistic dataset creation framework that only collects clean runway images. The training and testing data for this method are collected at a local airport using unmanned aircraft systems (UAS). Additionally, the developed dataset is provided for public use and further studies.
Abstract:Currently, the federated graph neural network (GNN) has attracted a lot of attention due to its wide applications in reality without violating the privacy regulations. Among all the privacy-preserving technologies, the differential privacy (DP) is the most promising one due to its effectiveness and light computational overhead. However, the DP-based federated GNN has not been well investigated, especially in the sub-graph-level setting, such as the scenario of recommendation system. The biggest challenge is how to guarantee the privacy and solve the non independent and identically distributed (non-IID) data in federated GNN simultaneously. In this paper, we propose DP-FedRec, a DP-based federated GNN to fill the gap. Private Set Intersection (PSI) is leveraged to extend the local graph for each client, and thus solve the non-IID problem. Most importantly, DP is applied not only on the weights but also on the edges of the intersection graph from PSI to fully protect the privacy of clients. The evaluation demonstrates DP-FedRec achieves better performance with the graph extension and DP only introduces little computations overhead.
Abstract:Foreign Object Debris (FOD) detection has attracted increased attention in the area of machine learning and computer vision. However, a robust and publicly available image dataset for FOD has not been initialized. To this end, this paper introduces an image dataset of FOD, named FOD in Airports (FOD-A). FOD-A object categories have been selected based on guidance from prior documentation and related research by the Federal Aviation Administration (FAA). In addition to the primary annotations of bounding boxes for object detection, FOD-A provides labeled environmental conditions. As such, each annotation instance is further categorized into three light level categories (bright, dim, and dark) and two weather categories (dry and wet). Currently, FOD-A has released 31 object categories and over 30,000 annotation instances. This paper presents the creation methodology, discusses the publicly available dataset extension process, and demonstrates the practicality of FOD-A with widely used machine learning models for object detection.
Abstract:Unmanned Aircraft Systems (UAS) have become an important resource for public service providers and smart cities. The purpose of this study is to expand this research area by integrating computer vision and UAS technology to automate public inspection. As an initial case study for this work, a dataset of common foreign object debris (FOD) is developed to assess the potential of light-weight automated detection. This paper presents the rationale and creation of this dataset. Future iterations of our work will include further technical details analyzing experimental implementation. At a local airport, UAS and portable cameras are used to collect the data contained in the initial version of this dataset. After collecting these videos of FOD, they were split into individual frames and stored as several thousand images. These frames are then annotated following standard computer vision format and stored in a folder-structure that reflects our creation method. The dataset annotations are validated using a custom tool that could be abstracted to fit future applications. Initial detection models were successfully created using the famous You Only Look Once algorithm, which indicates the practicality of the proposed data. Finally, several potential scenarios that could utilize either this dataset or similar methods for other public service are presented.
Abstract:Deep neural networks (DNNs)-powered Electrocardiogram (ECG) diagnosis systems emerge recently, and are expected to take over tedious examinations by cardiologists. However, their vulnerability to adversarial attacks still lack of comprehensive investigation. ECG recordings differ from images in the visualization, dynamic property and accessibility, thus, the existing image-targeted attack may not directly applicable. To fill this gap, this paper proposes ECGadv to explore the feasibility of adversarial attacks on arrhythmia classification system. We identify the main issues under two different deployment models(i.e., cloud-based and local-based) and propose effective attack schemes respectively. Our results demonstrate the blind spots of DNN-powered diagnosis system under adversarial attacks, which facilitates future researches on countermeasures.