Abstract:Parameter sharing has proven to be a parameter-efficient approach. Previous work on Transformers has focused on sharing parameters in different layers, which can improve the performance of models with limited parameters by increasing model depth. In this paper, we study why this approach works from two perspectives. First, increasing model depth makes the model more complex, and we hypothesize that the reason is related to model complexity (referring to FLOPs). Secondly, since each shared parameter will participate in the network computation several times in forward propagation, its corresponding gradient will have a different range of values from the original model, which will affect the model convergence. Based on this, we hypothesize that training convergence may also be one of the reasons. Through further analysis, we show that the success of this approach can be largely attributed to better convergence, with only a small part due to the increased model complexity. Inspired by this, we tune the training hyperparameters related to model convergence in a targeted manner. Experiments on 8 machine translation tasks show that our model achieves competitive performance with only half the model complexity of parameter sharing models.
Abstract:Deploying NMT models on mobile devices is essential for privacy, low latency, and offline scenarios. For high model capacity, NMT models are rather large. Running these models on devices is challenging with limited storage, memory, computation, and power consumption. Existing work either only focuses on a single metric such as FLOPs or general engine which is not good at auto-regressive decoding. In this paper, we present MobileNMT, a system that can translate in 15MB and 30ms on devices. We propose a series of principles for model compression when combined with quantization. Further, we implement an engine that is friendly to INT8 and decoding. With the co-design of model and engine, compared with the existing system, we speed up 47.0x and save 99.5% of memory with only 11.6% loss of BLEU. The code is publicly available at https://github.com/zjersey/Lightseq-ARM.
Abstract:Transformer-based models have proven to be powerful in many natural language, computer vision, and speech recognition applications. It is expensive to train these types of models due to unfixed input length, complex computation, and large numbers of parameters. Existing systems either only focus on efficient inference or optimize only BERT-like encoder models. In this paper, we present LightSeq2, a system for efficient training of Transformer-based models on GPUs. We propose a series of GPU optimization techniques tailored to computation flow and memory access patterns of neural layers in Transformers. LightSeq2 supports a variety of network architectures, including BERT (encoder-only), GPT (decoder-only), and Transformer (encoder-decoder). Our experiments on GPUs with varying models and datasets show that LightSeq2 is 1.4-3.5x faster than previous systems. In particular, it gains 308% training speedup compared with existing systems on a large public machine translation benchmark (WMT14 English-German).
Abstract:LightSeq is a high performance inference library for sequence processing and generation implemented in CUDA. To our best knowledge, this is the first open-source inference library which fully supports highly efficient computation of modern NLP models such as BERT, GPT, Transformer, etc. This library is efficient, functional and convenient. A demo usage can be found here: https://github.com/bytedance/lightseq/blob/master/example.
Abstract:Agile control of mobile manipulator is challenging because of the high complexity coupled by the robotic system and the unstructured working environment. Tracking and grasping a dynamic object with a random trajectory is even harder. In this paper, a multi-task reinforcement learning-based mobile manipulation control framework is proposed to achieve general dynamic object tracking and grasping. Several basic types of dynamic trajectories are chosen as the task training set. To improve the policy generalization in practice, random noise and dynamics randomization are introduced during the training process. Extensive experiments show that our policy trained can adapt to unseen random dynamic trajectories with about 0.1m tracking error and 75\% grasping success rate of dynamic objects. The trained policy can also be successfully deployed on a real mobile manipulator.
Abstract:Capsule networks (CapsNets) are capable of modeling visual hierarchical relationships, which is achieved by the "routing-by-agreement" mechanism. This paper proposes a pairwise agreement mechanism to build capsules, inspired by the feature interactions of factorization machines (FMs). The proposed method has a much lower computation complexity. We further proposed a new CapsNet architecture that combines the strengths of residual networks in representing low-level visual features and CapsNets in modeling the relationships of parts to wholes. We conduct comprehensive experiments to compare the routing algorithms, including dynamic routing, EM routing, and our proposed FM agreement, based on both architectures of original CapsNet and our proposed one, and the results show that our method achieves both excellent performance and efficiency under a variety of situations.