Abstract:3D neural style transfer has gained significant attention for its potential to provide user-friendly stylization with spatial consistency. However, existing 3D style transfer methods often fall short in terms of inference efficiency, generalization ability, and struggle to handle dynamic scenes with temporal consistency. In this paper, we introduce 4DStyleGaussian, a novel 4D style transfer framework designed to achieve real-time stylization of arbitrary style references while maintaining reasonable content affinity, multi-view consistency, and temporal coherence. Our approach leverages an embedded 4D Gaussian Splatting technique, which is trained using a reversible neural network for reducing content loss in the feature distillation process. Utilizing the 4D embedded Gaussians, we predict a 4D style transformation matrix that facilitates spatially and temporally consistent style transfer with Gaussian Splatting. Experiments demonstrate that our method can achieve high-quality and zero-shot stylization for 4D scenarios with enhanced efficiency and spatial-temporal consistency.
Abstract:Despite recent advancements in 3D generation methods, achieving controllability still remains a challenging issue. Current approaches utilizing score-distillation sampling are hindered by laborious procedures that consume a significant amount of time. Furthermore, the process of first generating 2D representations and then mapping them to 3D lacks internal alignment between the two forms of representation. To address these challenges, we introduce ControLRM, an end-to-end feed-forward model designed for rapid and controllable 3D generation using a large reconstruction model (LRM). ControLRM comprises a 2D condition generator, a condition encoding transformer, and a triplane decoder transformer. Instead of training our model from scratch, we advocate for a joint training framework. In the condition training branch, we lock the triplane decoder and reuses the deep and robust encoding layers pretrained with millions of 3D data in LRM. In the image training branch, we unlock the triplane decoder to establish an implicit alignment between the 2D and 3D representations. To ensure unbiased evaluation, we curate evaluation samples from three distinct datasets (G-OBJ, GSO, ABO) rather than relying on cherry-picking manual generation. The comprehensive experiments conducted on quantitative and qualitative comparisons of 3D controllability and generation quality demonstrate the strong generalization capacity of our proposed approach.
Abstract:3D biometric techniques on finger traits have become a new trend and have demonstrated a powerful ability for recognition and anti-counterfeiting. Existing methods follow an explicit 3D pipeline that reconstructs the models first and then extracts features from 3D models. However, these explicit 3D methods suffer from the following problems: 1) Inevitable information dropping during 3D reconstruction; 2) Tight coupling between specific hardware and algorithm for 3D reconstruction. It leads us to a question: Is it indispensable to reconstruct 3D information explicitly in recognition tasks? Hence, we consider this problem in an implicit manner, leaving the nerve-wracking 3D reconstruction problem for learnable neural networks with the help of neural radiance fields (NeRFs). We propose FingerNeRF, a novel generalizable NeRF for 3D finger biometrics. To handle the shape-radiance ambiguity problem that may result in incorrect 3D geometry, we aim to involve extra geometric priors based on the correspondence of binary finger traits like fingerprints or finger veins. First, we propose a novel Trait Guided Transformer (TGT) module to enhance the feature correspondence with the guidance of finger traits. Second, we involve extra geometric constraints on the volume rendering loss with the proposed Depth Distillation Loss and Trait Guided Rendering Loss. To evaluate the performance of the proposed method on different modalities, we collect two new datasets: SCUT-Finger-3D with finger images and SCUT-FingerVein-3D with finger vein images. Moreover, we also utilize the UNSW-3D dataset with fingerprint images for evaluation. In experiments, our FingerNeRF can achieve 4.37% EER on SCUT-Finger-3D dataset, 8.12% EER on SCUT-FingerVein-3D dataset, and 2.90% EER on UNSW-3D dataset, showing the superiority of the proposed implicit method in 3D finger biometrics.
Abstract:We introduce GaussianOcc, a systematic method that investigates the two usages of Gaussian splatting for fully self-supervised and efficient 3D occupancy estimation in surround views. First, traditional methods for self-supervised 3D occupancy estimation still require ground truth 6D poses from sensors during training. To address this limitation, we propose Gaussian Splatting for Projection (GSP) module to provide accurate scale information for fully self-supervised training from adjacent view projection. Additionally, existing methods rely on volume rendering for final 3D voxel representation learning using 2D signals (depth maps, semantic maps), which is both time-consuming and less effective. We propose Gaussian Splatting from Voxel space (GSV) to leverage the fast rendering properties of Gaussian splatting. As a result, the proposed GaussianOcc method enables fully self-supervised (no ground truth pose) 3D occupancy estimation in competitive performance with low computational cost (2.7 times faster in training and 5 times faster in rendering).
Abstract:Remote Photoplethysmography (rPPG) is a non-contact technique for extracting physiological signals from facial videos, used in applications like emotion monitoring, medical assistance, and anti-face spoofing. Unlike controlled laboratory settings, real-world environments often contain motion artifacts and noise, affecting the performance of existing methods. To address this, we propose PhysMamba, a dual-stream time-frequency interactive model based on Mamba. PhysMamba integrates the state-of-the-art Mamba-2 model and employs a dual-stream architecture to learn diverse rPPG features, enhancing robustness in noisy conditions. Additionally, we designed the Cross-Attention State Space Duality (CASSD) module to improve information exchange and feature complementarity between the two streams. We validated PhysMamba using PURE, UBFC-rPPG and MMPD. Experimental results show that PhysMamba achieves state-of-the-art performance across various scenarios, particularly in complex environments, demonstrating its potential in practical remote heart rate monitoring applications.
Abstract:Despite the impressive performance of Multi-view Stereo (MVS) approaches given plenty of training samples, the performance degradation when generalizing to unseen domains has not been clearly explored yet. In this work, we focus on the domain generalization problem in MVS. To evaluate the generalization results, we build a novel MVS domain generalization benchmark including synthetic and real-world datasets. In contrast to conventional domain generalization benchmarks, we consider a more realistic but challenging scenario, where only one source domain is available for training. The MVS problem can be analogized back to the feature matching task, and maintaining robust feature consistency among views is an important factor for improving generalization performance. To address the domain generalization problem in MVS, we propose a novel MVS framework, namely RobustMVS. A DepthClustering-guided Whitening (DCW) loss is further introduced to preserve the feature consistency among different views, which decorrelates multi-view features from viewpoint-specific style information based on geometric priors from depth maps. The experimental results further show that our method achieves superior performance on the domain generalization benchmark.
Abstract:3D visual grounding aims to automatically locate the 3D region of the specified object given the corresponding textual description. Existing works fail to distinguish similar objects especially when multiple referred objects are involved in the description. Experiments show that direct matching of language and visual modal has limited capacity to comprehend complex referential relationships in utterances. It is mainly due to the interference caused by redundant visual information in cross-modal alignment. To strengthen relation-orientated mapping between different modalities, we propose SeCG, a semantic-enhanced relational learning model based on a graph network with our designed memory graph attention layer. Our method replaces original language-independent encoding with cross-modal encoding in visual analysis. More text-related feature expressions are obtained through the guidance of global semantics and implicit relationships. Experimental results on ReferIt3D and ScanRefer benchmarks show that the proposed method outperforms the existing state-of-the-art methods, particularly improving the localization performance for the multi-relation challenges.
Abstract:4D style transfer aims at transferring arbitrary visual style to the synthesized novel views of a dynamic 4D scene with varying viewpoints and times. Existing efforts on 3D style transfer can effectively combine the visual features of style images and neural radiance fields (NeRF) but fail to handle the 4D dynamic scenes limited by the static scene assumption. Consequently, we aim to handle the novel challenging problem of 4D style transfer for the first time, which further requires the consistency of stylized results on dynamic objects. In this paper, we introduce StyleDyRF, a method that represents the 4D feature space by deforming a canonical feature volume and learns a linear style transformation matrix on the feature volume in a data-driven fashion. To obtain the canonical feature volume, the rays at each time step are deformed with the geometric prior of a pre-trained dynamic NeRF to render the feature map under the supervision of pre-trained visual encoders. With the content and style cues in the canonical feature volume and the style image, we can learn the style transformation matrix from their covariance matrices with lightweight neural networks. The learned style transformation matrix can reflect a direct matching of feature covariance from the content volume to the given style pattern, in analogy with the optimization of the Gram matrix in traditional 2D neural style transfer. The experimental results show that our method not only renders 4D photorealistic style transfer results in a zero-shot manner but also outperforms existing methods in terms of visual quality and consistency.
Abstract:Query-based methods have garnered significant attention in object detection since the advent of DETR, the pioneering end-to-end query-based detector. However, these methods face challenges like slow convergence and suboptimal performance. Notably, self-attention in object detection often hampers convergence due to its global focus. To address these issues, we propose FoLR, a transformer-like architecture with only decoders. We enhance the self-attention mechanism by isolating connections between irrelevant objects that makes it focus on local regions but not global regions. We also design the adaptive sampling method to extract effective features based on queries' local regions from feature maps. Additionally, we employ a look-back strategy for decoders to retain prior information, followed by the Feature Mixer module to fuse features and queries. Experimental results demonstrate FoLR's state-of-the-art performance in query-based detectors, excelling in convergence speed and computational efficiency.
Abstract:The core of Multi-view Stereo(MVS) is the matching process among reference and source pixels. Cost aggregation plays a significant role in this process, while previous methods focus on handling it via CNNs. This may inherit the natural limitation of CNNs that fail to discriminate repetitive or incorrect matches due to limited local receptive fields. To handle the issue, we aim to involve Transformer into cost aggregation. However, another problem may occur due to the quadratically growing computational complexity caused by Transformer, resulting in memory overflow and inference latency. In this paper, we overcome these limits with an efficient Transformer-based cost aggregation network, namely CostFormer. The Residual Depth-Aware Cost Transformer(RDACT) is proposed to aggregate long-range features on cost volume via self-attention mechanisms along the depth and spatial dimensions. Furthermore, Residual Regression Transformer(RRT) is proposed to enhance spatial attention. The proposed method is a universal plug-in to improve learning-based MVS methods.