Abstract:Large Language Models (LLMs) have revolutionized natural language processing, yet their internal mechanisms remain largely opaque. Recently, mechanistic interpretability has attracted significant attention from the research community as a means to understand the inner workings of LLMs. Among various mechanistic interpretability approaches, Sparse Autoencoders (SAEs) have emerged as a particularly promising method due to their ability to disentangle the complex, superimposed features within LLMs into more interpretable components. This paper presents a comprehensive examination of SAEs as a promising approach to interpreting and understanding LLMs. We provide a systematic overview of SAE principles, architectures, and applications specifically tailored for LLM analysis, covering theoretical foundations, implementation strategies, and recent developments in sparsity mechanisms. We also explore how SAEs can be leveraged to explain the internal workings of LLMs, steer model behaviors in desired directions, and develop more transparent training methodologies for future models. Despite the challenges that remain around SAE implementation and scaling, they continue to provide valuable tools for understanding the internal mechanisms of large language models.
Abstract:Large language models (LLMs) excel at handling human queries, but they can occasionally generate flawed or unexpected responses. Understanding their internal states is crucial for understanding their successes, diagnosing their failures, and refining their capabilities. Although sparse autoencoders (SAEs) have shown promise for interpreting LLM internal representations, limited research has explored how to better explain SAE features, i.e., understanding the semantic meaning of features learned by SAE. Our theoretical analysis reveals that existing explanation methods suffer from the frequency bias issue, where they emphasize linguistic patterns over semantic concepts, while the latter is more critical to steer LLM behaviors. To address this, we propose using a fixed vocabulary set for feature interpretations and designing a mutual information-based objective, aiming to better capture the semantic meaning behind these features. We further propose two runtime steering strategies that adjust the learned feature activations based on their corresponding explanations. Empirical results show that, compared to baselines, our method provides more discourse-level explanations and effectively steers LLM behaviors to defend against jailbreak attacks. These findings highlight the value of explanations for steering LLM behaviors in downstream applications. We will release our code and data once accepted.
Abstract:Large multimodal models (LMMs) have shown impressive capabilities in a wide range of visual tasks. However, they often struggle with fine-grained visual reasoning, failing to identify domain-specific objectives and provide justifiable explanations for their predictions. To address this, we propose a novel visual rejection sampling framework to improve the cognition and explainability of LMMs using self-synthesized data. Specifically, visual fine-tuning requires images, queries, and target answers. Our approach begins by synthesizing interpretable answers that include human-verifiable visual features. These features are based on expert-defined concepts, carefully selected based on their alignment with the image content. After each round of fine-tuning, we apply a reward model-free filtering mechanism to select the highest-quality interpretable answers for the next round of tuning. This iterative process of data synthesis and fine-tuning progressively improves the model's ability to generate accurate and reasonable explanations. Experimental results demonstrate the effectiveness of our method in improving both the accuracy and explainability of specialized visual classification tasks.
Abstract:Modern text classification methods heavily rely on contextual embeddings from large language models (LLMs). Compared to human-engineered features, these embeddings provide automatic and effective representations for classification model training. However, they also introduce a challenge: we lose the ability to manually remove unintended features, such as sensitive or task-irrelevant features, to guarantee regulatory compliance or improve the generalizability of classification models. This limitation arises because LLM embeddings are opaque and difficult to interpret. In this paper, we propose a novel framework to identify and regularize unintended features in the LLM latent space. Specifically, we first pre-train a sparse autoencoder (SAE) to extract interpretable features from LLM latent spaces. To ensure the SAE can capture task-specific features, we further fine-tune it on task-specific datasets. In training the classification model, we propose a simple and effective regularizer, by minimizing the similarity between the classifier weights and the identified unintended feature, to remove the impacts of these unintended features toward classification. We evaluate the proposed framework on three real-world tasks, including toxic chat detection, reward modeling, and disease diagnosis. Results show that the proposed framework can significantly improve the classifier's generalizability by regularizing those features that are not semantically correlated to each task. This work pioneers controllable text classification on LLM latent spaces by leveraging interpreted features to address generalizability, fairness, and privacy challenges. We will release our code and data once accepted.
Abstract:Large Language Models (LLMs) have shown remarkable capabilities in general domains but often struggle with tasks requiring specialized knowledge. Conventional Retrieval-Augmented Generation (RAG) techniques typically retrieve external information from static knowledge bases, which can be outdated or incomplete, missing fine-grained clinical details essential for accurate medical question answering. In this work, we propose SearchRAG, a novel framework that overcomes these limitations by leveraging real-time search engines. Our method employs synthetic query generation to convert complex medical questions into search-engine-friendly queries and utilizes uncertainty-based knowledge selection to filter and incorporate the most relevant and informative medical knowledge into the LLM's input. Experimental results demonstrate that our method significantly improves response accuracy in medical question answering tasks, particularly for complex questions requiring detailed and up-to-date knowledge.
Abstract:Understanding the internal mechanisms of transformer-based language models remains challenging. Mechanistic interpretability based on circuit discovery aims to reverse engineer neural networks by analyzing their internal processes at the level of computational subgraphs. In this paper, we revisit existing gradient-based circuit identification methods and find that their performance is either affected by the zero-gradient problem or saturation effects, where edge attribution scores become insensitive to input changes, resulting in noisy and unreliable attribution evaluations for circuit components. To address the saturation effect, we propose Edge Attribution Patching with GradPath (EAP-GP), EAP-GP introduces an integration path, starting from the input and adaptively following the direction of the difference between the gradients of corrupted and clean inputs to avoid the saturated region. This approach enhances attribution reliability and improves the faithfulness of circuit identification. We evaluate EAP-GP on 6 datasets using GPT-2 Small, GPT-2 Medium, and GPT-2 XL. Experimental results demonstrate that EAP-GP outperforms existing methods in circuit faithfulness, achieving improvements up to 17.7%. Comparisons with manually annotated ground-truth circuits demonstrate that EAP-GP achieves precision and recall comparable to or better than previous approaches, highlighting its effectiveness in identifying accurate circuits.
Abstract:Recent studies show that large language models (LLMs) are powerful tools for working with natural language, bringing advances in many areas of computational linguistics. However, these models face challenges when applied to low-resource languages due to limited training data and difficulty in understanding cultural nuances. Research is now focusing on multilingual models to improve LLM performance for these languages. Education in these languages also struggles with a lack of resources and qualified teachers, particularly in underdeveloped regions. Here, LLMs can be transformative, supporting innovative methods like community-driven learning and digital platforms. This paper discusses how LLMs could enhance education for low-resource languages, emphasizing practical applications and benefits.
Abstract:Large Language Models (LLMs) have demonstrated remarkable success across a wide range of tasks and domains. However, their performance in low-resource language translation, particularly when translating into these languages, remains underexplored. This gap poses significant challenges, as linguistic barriers hinder the cultural preservation and development of minority communities. To address this issue, this paper introduces a novel retrieval-based method that enhances translation quality for low-resource languages by focusing on key terms, which involves translating keywords and retrieving corresponding examples from existing data. To evaluate the effectiveness of this method, we conducted experiments translating from English into three low-resource languages: Cherokee, a critically endangered indigenous language of North America; Tibetan, a historically and culturally significant language in Asia; and Manchu, a language with few remaining speakers. Our comparison with the zero-shot performance of GPT-4o and LLaMA 3.1 405B, highlights the significant challenges these models face when translating into low-resource languages. In contrast, our retrieval-based method shows promise in improving both word-level accuracy and overall semantic understanding by leveraging existing resources more effectively.
Abstract:The rapid advances in Large Language Models (LLMs) have the potential to transform manufacturing industry, offering new opportunities to optimize processes, improve efficiency, and drive innovation. This paper provides a comprehensive exploration of the integration of LLMs into the manufacturing domain, focusing on their potential to automate and enhance various aspects of manufacturing, from product design and development to quality control, supply chain optimization, and talent management. Through extensive evaluations across multiple manufacturing tasks, we demonstrate the remarkable capabilities of state-of-the-art LLMs, such as GPT-4V, in understanding and executing complex instructions, extracting valuable insights from vast amounts of data, and facilitating knowledge sharing. We also delve into the transformative potential of LLMs in reshaping manufacturing education, automating coding processes, enhancing robot control systems, and enabling the creation of immersive, data-rich virtual environments through the industrial metaverse. By highlighting the practical applications and emerging use cases of LLMs in manufacturing, this paper aims to provide a valuable resource for professionals, researchers, and decision-makers seeking to harness the power of these technologies to address real-world challenges, drive operational excellence, and unlock sustainable growth in an increasingly competitive landscape.
Abstract:Graph Neural Networks (GNNs) have been widely deployed in various real-world applications. However, most GNNs are black-box models that lack explanations. One strategy to explain GNNs is through counterfactual explanation, which aims to find minimum perturbations on input graphs that change the GNN predictions. Existing works on GNN counterfactual explanations primarily concentrate on the local-level perspective (i.e., generating counterfactuals for each individual graph), which suffers from information overload and lacks insights into the broader cross-graph relationships. To address such issues, we propose GlobalGCE, a novel global-level graph counterfactual explanation method. GlobalGCE aims to identify a collection of subgraph mapping rules as counterfactual explanations for the target GNN. According to these rules, substituting certain significant subgraphs with their counterfactual subgraphs will change the GNN prediction to the desired class for most graphs (i.e., maximum coverage). Methodologically, we design a significant subgraph generator and a counterfactual subgraph autoencoder in our GlobalGCE, where the subgraphs and the rules can be effectively generated. Extensive experiments demonstrate the superiority of our GlobalGCE compared to existing baselines. Our code can be found at https://anonymous.4open.science/r/GlobalGCE-92E8.