Abstract:Multimodal Large Language Models (MLLMs) are rapidly evolving, demonstrating impressive capabilities as multimodal assistants that interact with both humans and their environments. However, this increased sophistication introduces significant safety concerns. In this paper, we present the first evaluation and analysis of a novel safety challenge termed Multimodal Situational Safety, which explores how safety considerations vary based on the specific situation in which the user or agent is engaged. We argue that for an MLLM to respond safely, whether through language or action, it often needs to assess the safety implications of a language query within its corresponding visual context. To evaluate this capability, we develop the Multimodal Situational Safety benchmark (MSSBench) to assess the situational safety performance of current MLLMs. The dataset comprises 1,820 language query-image pairs, half of which the image context is safe, and the other half is unsafe. We also develop an evaluation framework that analyzes key safety aspects, including explicit safety reasoning, visual understanding, and, crucially, situational safety reasoning. Our findings reveal that current MLLMs struggle with this nuanced safety problem in the instruction-following setting and struggle to tackle these situational safety challenges all at once, highlighting a key area for future research. Furthermore, we develop multi-agent pipelines to coordinately solve safety challenges, which shows consistent improvement in safety over the original MLLM response. Code and data: mssbench.github.io.
Abstract:The rapid development of the Internet has profoundly changed human life. Humans are increasingly expressing themselves and interacting with others on social media platforms. However, although artificial intelligence technology has been widely used in many aspects of life, its application in social media content creation is still blank. To solve this problem, we propose a new prompt word generation framework based on multi-modal information fusion, which combines multiple tasks including topic classification, sentiment analysis, scene recognition and keyword extraction to generate more comprehensive prompt words. Subsequently, we use a template containing a set of prompt words to guide ChatGPT to generate high-quality tweets. Furthermore, in the absence of effective and objective evaluation criteria in the field of content generation, we use the ChatGPT tool to evaluate the results generated by the algorithm, making large-scale evaluation of content generation algorithms possible. Evaluation results on extensive content generation demonstrate that our cue word generation framework generates higher quality content compared to manual methods and other cueing techniques, while topic classification, sentiment analysis, and scene recognition significantly enhance content clarity and its consistency with the image.
Abstract:Current large language models (LLMs) provide a strong foundation for large-scale user-oriented natural language tasks. A large number of users can easily inject adversarial text or instructions through the user interface, thus causing LLMs model security challenges. Although there is currently a large amount of research on prompt injection attacks, most of these black-box attacks use heuristic strategies. It is unclear how these heuristic strategies relate to the success rate of attacks and thus effectively improve model robustness. To solve this problem, we redefine the goal of the attack: to maximize the KL divergence between the conditional probabilities of the clean text and the adversarial text. Furthermore, we prove that maximizing the KL divergence is equivalent to maximizing the Mahalanobis distance between the embedded representation $x$ and $x'$ of the clean text and the adversarial text when the conditional probability is a Gaussian distribution and gives a quantitative relationship on $x$ and $x'$. Then we designed a simple and effective goal-guided generative prompt injection strategy (G2PIA) to find an injection text that satisfies specific constraints to achieve the optimal attack effect approximately. It is particularly noteworthy that our attack method is a query-free black-box attack method with low computational cost. Experimental results on seven LLM models and four datasets show the effectiveness of our attack method.
Abstract:Large language models (LLMs) have been applied in many fields with rapid development in recent years. As a classic machine learning task, time series forecasting has recently received a boost from LLMs. However, there is a research gap in the LLMs' preferences in this field. In this paper, by comparing LLMs with traditional models, many properties of LLMs in time series prediction are found. For example, our study shows that LLMs excel in predicting time series with clear patterns and trends but face challenges with datasets lacking periodicity. We explain our findings through designing prompts to require LLMs to tell the period of the datasets. In addition, the input strategy is investigated, and it is found that incorporating external knowledge and adopting natural language paraphrases positively affects the predictive performance of LLMs for time series. Overall, this study contributes to insight into the advantages and limitations of LLMs in time series forecasting under different conditions.
Abstract:Recent advancements in multi-modal artificial intelligence (AI) have revolutionized the fields of stock market forecasting and heart rate monitoring. Utilizing diverse data sources can substantially improve prediction accuracy. Nonetheless, additional data may not always align with the original dataset. Interpolation methods are commonly utilized for handling missing values in modal data, though they may exhibit limitations in the context of sparse information. Addressing this challenge, we propose a Modality Completion Deep Belief Network-Based Model (MC-DBN). This approach utilizes implicit features of complete data to compensate for gaps between itself and additional incomplete data. It ensures that the enhanced multi-modal data closely aligns with the dynamic nature of the real world to enhance the effectiveness of the model. We conduct evaluations of the MC-DBN model in two datasets from the stock market forecasting and heart rate monitoring domains. Comprehensive experiments showcase the model's capacity to bridge the semantic divide present in multi-modal data, subsequently enhancing its performance. The source code is available at: https://github.com/logan-0623/DBN-generate
Abstract:Time series analysis and modelling constitute a crucial research area. Traditional artificial neural networks struggle with complex, non-stationary time series data due to high computational complexity, limited ability to capture temporal information, and difficulty in handling event-driven data. To address these challenges, we propose a Multi-modal Time Series Analysis Model Based on Spiking Neural Network (MTSA-SNN). The Pulse Encoder unifies the encoding of temporal images and sequential information in a common pulse-based representation. The Joint Learning Module employs a joint learning function and weight allocation mechanism to fuse information from multi-modal pulse signals complementary. Additionally, we incorporate wavelet transform operations to enhance the model's ability to analyze and evaluate temporal information. Experimental results demonstrate that our method achieved superior performance on three complex time-series tasks. This work provides an effective event-driven approach to overcome the challenges associated with analyzing intricate temporal information. Access to the source code is available at https://github.com/Chenngzz/MTSA-SNN}{https://github.com/Chenngzz/MTSA-SNN