Abstract:The unprecedented capture and application of face images raise increasing concerns on anonymization to fight against privacy disclosure. Most existing methods may suffer from the problem of excessive change of the identity-independent information or insufficient identity protection. In this paper, we present a new face anonymization approach by distracting the intrinsic and extrinsic identity attentions. On the one hand, we anonymize the identity information in the feature space by distracting the intrinsic identity attention. On the other, we anonymize the visual clues (i.e. appearance and geometry structure) by distracting the extrinsic identity attention. Our approach allows for flexible and intuitive manipulation of face appearance and geometry structure to produce diverse results, and it can also be used to instruct users to perform personalized anonymization. We conduct extensive experiments on multiple datasets and demonstrate that our approach outperforms state-of-the-art methods.
Abstract:In this paper, we study a multi-input multi-output (MIMO) beamforming design in an integrated sensing and communication (ISAC) system, in which an ISAC base station (BS) is used to communicate with multiple downlink users and simultaneously the communication signals are reused for sensing multiple targets. Our interested sensing parameters are the angle and delay information of the targets, which can be used to locate these targets. Under this consideration, we first derive the Cram\'{e}r-Rao bound (CRB) for angle and delay estimation. Then, we optimize the transmit beamforming at the BS to minimize the CRB, subject to communication rate and power constraints. In particular, we obtain the optimal solution in closed-form in the case of single-target and single-user, and in the case of multi-target and multi-user scenario, the sparsity of the optimal solution is proven, leading to a reduction in computational complexity during optimization. The numerical results demonstrate that the optimized beamforming yields excellent positioning performance and effectively reduces the requirement for a large number of antennas at the BS.
Abstract:Deep learning (DL) has gained popularity in recent years as an effective tool for classifying the current health and predicting the future of industrial equipment. However, most DL models have black-box components with an underlying structure that is too complex to be interpreted and explained to human users. This presents significant challenges when deploying these models for safety-critical maintenance tasks, where non-technical personnel often need to have complete trust in the recommendations these models give. To address these challenges, we utilize a convolutional neural network (CNN) with Gradient-weighted Class Activation Mapping (Grad-CAM) activation map visualizations to form an interpretable DL method for classifying bearing faults. After the model training process, we apply Grad-CAM to identify a training sample's feature importance and to form a library of diagnosis knowledge (or health library) containing training samples with annotated feature maps. During the model evaluation process, the proposed approach retrieves prediction basis samples from the health library according to the similarity of the feature importance. The proposed method can be easily applied to any CNN model without modifying the model architecture, and our experimental results show that this method can select prediction basis samples that are intuitively and physically meaningful, improving the model's trustworthiness for human users.
Abstract:Accurate battery lifetime prediction is important for preventative maintenance, warranties, and improved cell design and manufacturing. However, manufacturing variability and usage-dependent degradation make life prediction challenging. Here, we investigate new features derived from capacity-voltage data in early life to predict the lifetime of cells cycled under widely varying charge rates, discharge rates, and depths of discharge. Features were extracted from regularly scheduled reference performance tests (i.e., low rate full cycles) during cycling. The early-life features capture a cell's state of health and the rate of change of component-level degradation modes, some of which correlate strongly with cell lifetime. Using a newly generated dataset from 225 nickel-manganese-cobalt/graphite Li-ion cells aged under a wide range of conditions, we demonstrate a lifetime prediction of in-distribution cells with 15.1% mean absolute percentage error using no more than the first 15% of data, for most cells. Further testing using a hierarchical Bayesian regression model shows improved performance on extrapolation, achieving 21.8% mean absolute percentage error for out-of-distribution cells. Our approach highlights the importance of using domain knowledge of lithium-ion battery degradation modes to inform feature engineering. Further, we provide the community with a new publicly available battery aging dataset with cells cycled beyond 80% of their rated capacity.
Abstract:Segment Anything Model (SAM) has revolutionized the way of segmentation. However, SAM's performance may decline when applied to tasks involving domains that differ from natural images. Nonetheless, by employing fine-tuning techniques, SAM exhibits promising capabilities in specific domains, such as medicine and planetary science. Notably, there is a lack of research on the application of SAM to sonar imaging. In this paper, we aim to address this gap by conducting a comprehensive investigation of SAM's performance on sonar images. Specifically, we evaluate SAM using various settings on sonar images. Additionally, we fine-tune SAM using effective methods both with prompts and for semantic segmentation, thereby expanding its applicability to tasks requiring automated segmentation. Experimental results demonstrate a significant improvement in the performance of the fine-tuned SAM.
Abstract:On top of machine learning models, uncertainty quantification (UQ) functions as an essential layer of safety assurance that could lead to more principled decision making by enabling sound risk assessment and management. The safety and reliability improvement of ML models empowered by UQ has the potential to significantly facilitate the broad adoption of ML solutions in high-stakes decision settings, such as healthcare, manufacturing, and aviation, to name a few. In this tutorial, we aim to provide a holistic lens on emerging UQ methods for ML models with a particular focus on neural networks and the applications of these UQ methods in tackling engineering design as well as prognostics and health management problems. Toward this goal, we start with a comprehensive classification of uncertainty types, sources, and causes pertaining to UQ of ML models. Next, we provide a tutorial-style description of several state-of-the-art UQ methods: Gaussian process regression, Bayesian neural network, neural network ensemble, and deterministic UQ methods focusing on spectral-normalized neural Gaussian process. Established upon the mathematical formulations, we subsequently examine the soundness of these UQ methods quantitatively and qualitatively (by a toy regression example) to examine their strengths and shortcomings from different dimensions. Then, we review quantitative metrics commonly used to assess the quality of predictive uncertainty in classification and regression problems. Afterward, we discuss the increasingly important role of UQ of ML models in solving challenging problems in engineering design and health prognostics. Two case studies with source codes available on GitHub are used to demonstrate these UQ methods and compare their performance in the life prediction of lithium-ion batteries at the early stage and the remaining useful life prediction of turbofan engines.
Abstract:Operators from various industries have been pushing the adoption of wireless sensing nodes for industrial monitoring, and such efforts have produced sizeable condition monitoring datasets that can be used to build diagnosis algorithms capable of warning maintenance engineers of impending failure or identifying current system health conditions. However, single operators may not have sufficiently large fleets of systems or component units to collect sufficient data to develop data-driven algorithms. Collecting a satisfactory quantity of fault patterns for safety-critical systems is particularly difficult due to the rarity of faults. Federated learning (FL) has emerged as a promising solution to leverage datasets from multiple operators to train a decentralized asset fault diagnosis model while maintaining data confidentiality. However, there are still considerable obstacles to overcome when it comes to optimizing the federation strategy without leaking sensitive data and addressing the issue of client dataset heterogeneity. This is particularly prevalent in fault diagnosis applications due to the high diversity of operating conditions and system configurations. To address these two challenges, we propose a novel clustering-based FL algorithm where clients are clustered for federating based on dataset similarity. To quantify dataset similarity between clients without explicitly sharing data, each client sets aside a local test dataset and evaluates the other clients' model prediction accuracy and uncertainty on this test dataset. Clients are then clustered for FL based on relative prediction accuracy and uncertainty.
Abstract:Hypergraph neural networks (HGNN) have shown superior performance in various deep learning tasks, leveraging the high-order representation ability to formulate complex correlations among data by connecting two or more nodes through hyperedge modeling. Despite the well-studied adversarial attacks on Graph Neural Networks (GNN), there is few study on adversarial attacks against HGNN, which leads to a threat to the safety of HGNN applications. In this paper, we introduce HyperAttack, the first white-box adversarial attack framework against hypergraph neural networks. HyperAttack conducts a white-box structure attack by perturbing hyperedge link status towards the target node with the guidance of both gradients and integrated gradients. We evaluate HyperAttack on the widely-used Cora and PubMed datasets and three hypergraph neural networks with typical hypergraph modeling techniques. Compared to state-of-the-art white-box structural attack methods for GNN, HyperAttack achieves a 10-20X improvement in time efficiency while also increasing attack success rates by 1.3%-3.7%. The results show that HyperAttack can achieve efficient adversarial attacks that balance effectiveness and time costs.
Abstract:Currently, most deep learning methods cannot solve the problem of scarcity of industrial product defect samples and significant differences in characteristics. This paper proposes an unsupervised defect detection algorithm based on a reconstruction network, which is realized using only a large number of easily obtained defect-free sample data. The network includes two parts: image reconstruction and surface defect area detection. The reconstruction network is designed through a fully convolutional autoencoder with a lightweight structure. Only a small number of normal samples are used for training so that the reconstruction network can be A defect-free reconstructed image is generated. A function combining structural loss and $\mathit{L}1$ loss is proposed as the loss function of the reconstruction network to solve the problem of poor detection of irregular texture surface defects. Further, the residual of the reconstructed image and the image to be tested is used as the possible region of the defect, and conventional image operations can realize the location of the fault. The unsupervised defect detection algorithm of the proposed reconstruction network is used on multiple defect image sample sets. Compared with other similar algorithms, the results show that the unsupervised defect detection algorithm of the reconstructed network has strong robustness and accuracy.
Abstract:The unsupervised anomaly localization task faces the challenge of missing anomaly sample training, detecting multiple types of anomalies, and dealing with the proportion of the area of multiple anomalies. A separate teacher-student feature imitation network structure and a multi-scale processing strategy combining an image and feature pyramid are proposed to solve these problems. A network module importance search method based on gradient descent optimization is proposed to simplify the network structure. The experimental results show that the proposed algorithm performs better than the feature modeling anomaly localization method on the real industrial product detection dataset in the same period. The multi-scale strategy can effectively improve the effect compared with the benchmark method.