Abstract:Ophthalmologists typically require multimodal data sources to improve diagnostic accuracy in clinical decisions. However, due to medical device shortages, low-quality data and data privacy concerns, missing data modalities are common in real-world scenarios. Existing deep learning methods tend to address it by learning an implicit latent subspace representation for different modality combinations. We identify two significant limitations of these methods: (1) implicit representation constraints that hinder the model's ability to capture modality-specific information and (2) modality heterogeneity, causing distribution gaps and redundancy in feature representations. To address these, we propose an Incomplete Modality Disentangled Representation (IMDR) strategy, which disentangles features into explicit independent modal-common and modal-specific features by guidance of mutual information, distilling informative knowledge and enabling it to reconstruct valuable missing semantics and produce robust multimodal representations. Furthermore, we introduce a joint proxy learning module that assists IMDR in eliminating intra-modality redundancy by exploiting the extracted proxies from each class. Experiments on four ophthalmology multimodal datasets demonstrate that the proposed IMDR outperforms the state-of-the-art methods significantly.
Abstract:Recent advancements in multi-modal artificial intelligence (AI) have revolutionized the fields of stock market forecasting and heart rate monitoring. Utilizing diverse data sources can substantially improve prediction accuracy. Nonetheless, additional data may not always align with the original dataset. Interpolation methods are commonly utilized for handling missing values in modal data, though they may exhibit limitations in the context of sparse information. Addressing this challenge, we propose a Modality Completion Deep Belief Network-Based Model (MC-DBN). This approach utilizes implicit features of complete data to compensate for gaps between itself and additional incomplete data. It ensures that the enhanced multi-modal data closely aligns with the dynamic nature of the real world to enhance the effectiveness of the model. We conduct evaluations of the MC-DBN model in two datasets from the stock market forecasting and heart rate monitoring domains. Comprehensive experiments showcase the model's capacity to bridge the semantic divide present in multi-modal data, subsequently enhancing its performance. The source code is available at: https://github.com/logan-0623/DBN-generate
Abstract:Time series analysis and modelling constitute a crucial research area. Traditional artificial neural networks struggle with complex, non-stationary time series data due to high computational complexity, limited ability to capture temporal information, and difficulty in handling event-driven data. To address these challenges, we propose a Multi-modal Time Series Analysis Model Based on Spiking Neural Network (MTSA-SNN). The Pulse Encoder unifies the encoding of temporal images and sequential information in a common pulse-based representation. The Joint Learning Module employs a joint learning function and weight allocation mechanism to fuse information from multi-modal pulse signals complementary. Additionally, we incorporate wavelet transform operations to enhance the model's ability to analyze and evaluate temporal information. Experimental results demonstrate that our method achieved superior performance on three complex time-series tasks. This work provides an effective event-driven approach to overcome the challenges associated with analyzing intricate temporal information. Access to the source code is available at https://github.com/Chenngzz/MTSA-SNN}{https://github.com/Chenngzz/MTSA-SNN